osslsigncode/msi.c
2022-02-23 22:35:40 +01:00

1340 lines
43 KiB
C

/*
* MSI file support library
*
* Copyright (C) 2021 Michał Trojnara <Michal.Trojnara@stunnel.org>
* Author: Małgorzata Olszówka <Malgorzata.Olszowka@stunnel.org>
*
* Reference specifications:
* http://en.wikipedia.org/wiki/Compound_File_Binary_Format
* https://msdn.microsoft.com/en-us/library/dd942138.aspx
* https://github.com/microsoft/compoundfilereader
*/
#include <string.h> /* memcmp */
#include "msi.h"
#define MIN(a,b) ((a) < (b) ? a : b)
static int recurse_entry(MSI_FILE *msi, uint32_t entryID, MSI_DIRENT *parent);
/* Get absolute address from sector and offset */
static const u_char *sector_offset_to_address(MSI_FILE *msi, uint32_t sector, uint32_t offset)
{
if (sector >= MAXREGSECT || offset >= msi->m_sectorSize
|| (msi->m_bufferLen - offset) / msi->m_sectorSize <= sector) {
printf("Corrupted file\n");
return NULL; /* FAILED */
}
return msi->m_buffer + (sector + 1) * msi->m_sectorSize + offset;
}
static uint32_t get_fat_sector_location(MSI_FILE *msi, uint32_t fatSectorNumber)
{
uint32_t entriesPerSector, difatSectorLocation;
const u_char *address;
if (fatSectorNumber < DIFAT_IN_HEADER) {
return msi->m_hdr->headerDIFAT[fatSectorNumber];
} else {
fatSectorNumber -= DIFAT_IN_HEADER;
entriesPerSector = msi->m_sectorSize / 4 - 1;
difatSectorLocation = msi->m_hdr->firstDIFATSectorLocation;
while (fatSectorNumber >= entriesPerSector) {
fatSectorNumber -= entriesPerSector;
address = sector_offset_to_address(msi, difatSectorLocation, msi->m_sectorSize - 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
difatSectorLocation = GET_UINT32_LE(address);
}
address = sector_offset_to_address(msi, difatSectorLocation, fatSectorNumber * 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
return GET_UINT32_LE(address);
}
}
/* Lookup FAT */
static uint32_t get_next_sector(MSI_FILE *msi, uint32_t sector)
{
const u_char *address;
uint32_t entriesPerSector = msi->m_sectorSize / 4;
uint32_t fatSectorNumber = sector / entriesPerSector;
uint32_t fatSectorLocation = get_fat_sector_location(msi, fatSectorNumber);
if (fatSectorLocation == NOSTREAM) {
printf("Failed to get a fat sector location\n");
return NOSTREAM; /* FAILED */
}
address = sector_offset_to_address(msi, fatSectorLocation, sector % entriesPerSector * 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
return GET_UINT32_LE(address);
}
/* Locate the final sector/offset when original offset expands multiple sectors */
static int locate_final_sector(MSI_FILE *msi, uint32_t sector, uint32_t offset, uint32_t *finalSector, uint32_t *finalOffset)
{
while (offset >= msi->m_sectorSize) {
offset -= msi->m_sectorSize;
sector = get_next_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next sector\n");
return 0; /* FAILED */
}
}
*finalSector = sector;
*finalOffset = offset;
return 1; /* OK */
}
/* Get absolute address from mini sector and offset */
static const u_char *mini_sector_offset_to_address(MSI_FILE *msi, uint32_t sector, uint32_t offset)
{
if (sector >= MAXREGSECT || offset >= msi->m_minisectorSize ||
(msi->m_bufferLen - offset) / msi->m_minisectorSize <= sector) {
printf("Corrupted file\n");
return NULL; /* FAILED */
}
if (!locate_final_sector(msi, msi->m_miniStreamStartSector, sector * msi->m_minisectorSize + offset, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NULL; /* FAILED */
}
return sector_offset_to_address(msi, sector, offset);
}
/*
* Copy as many as possible in each step
* copylen typically iterate as: msi->m_sectorSize - offset --> msi->m_sectorSize --> msi->m_sectorSize --> ... --> remaining
*/
static int read_stream(MSI_FILE *msi, uint32_t sector, uint32_t offset, char *buffer, uint32_t len)
{
if (!locate_final_sector(msi, sector, offset, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return 0; /* FAILED */
}
while (len > 0) {
const u_char *address;
uint32_t copylen;
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next sector address\n");
return 0; /* FAILED */
}
copylen = MIN(len, msi->m_sectorSize - offset);
if (msi->m_buffer + msi->m_bufferLen < address + copylen) {
printf("Corrupted file\n");
return 0; /* FAILED */
}
memcpy(buffer, address, copylen);
buffer += copylen;
len -= copylen;
sector = get_next_sector(msi, sector);
if (sector == 0) {
printf("Failed to get a next sector\n");
return 0; /* FAILED */
}
offset = 0;
}
return 1; /* OK */
}
/* Lookup miniFAT */
static uint32_t get_next_mini_sector(MSI_FILE *msi, uint32_t miniSector)
{
uint32_t sector, offset;
const u_char *address;
if (!locate_final_sector(msi, msi->m_hdr->firstMiniFATSectorLocation, miniSector * 4, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NOSTREAM; /* FAILED */
}
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next mini sector address\n");
return NOSTREAM; /* FAILED */
}
return GET_UINT32_LE(address);
}
static int locate_final_mini_sector(MSI_FILE *msi, uint32_t sector, uint32_t offset, uint32_t *finalSector, uint32_t *finalOffset)
{
while (offset >= msi->m_minisectorSize) {
offset -= msi->m_minisectorSize;
sector = get_next_mini_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next mini sector\n");
return 0; /* FAILED */
}
}
*finalSector = sector;
*finalOffset = offset;
return 1; /* OK */
}
/* Same logic as "read_stream" except that use mini stream functions instead */
static int read_mini_stream(MSI_FILE *msi, uint32_t sector, uint32_t offset, char *buffer, uint32_t len)
{
if (!locate_final_mini_sector(msi, sector, offset, &sector, &offset)) {
printf("Failed to locate a final mini sector\n");
return 0; /* FAILED */
}
while (len > 0) {
const u_char *address;
uint32_t copylen;
address = mini_sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next mini sector address\n");
return 0; /* FAILED */
}
copylen = MIN(len, msi->m_minisectorSize - offset);
if (msi->m_buffer + msi->m_bufferLen < address + copylen) {
printf("Corrupted file\n");
return 0; /* FAILED */
}
memcpy(buffer, address, copylen);
buffer += copylen;
len -= copylen;
sector = get_next_mini_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next mini sector\n");
return 0; /* FAILED */
}
offset = 0;
}
return 1; /* OK */
}
/*
* Get file (stream) data start with "offset".
* The buffer must have enough space to store "len" bytes. Typically "len" is derived by the steam length.
*/
int msi_file_read(MSI_FILE *msi, MSI_ENTRY *entry, uint32_t offset, char *buffer, uint32_t len)
{
if (len < msi->m_hdr->miniStreamCutoffSize) {
if (!read_mini_stream(msi, entry->startSectorLocation, offset, buffer, len))
return 0; /* FAILED */
} else {
if (!read_stream(msi, entry->startSectorLocation, offset, buffer, len))
return 0; /* FAILED */
}
return 1; /* OK */
}
/* Parse MSI_FILE_HDR struct */
static MSI_FILE_HDR *parse_header(char *data)
{
MSI_FILE_HDR *header = (MSI_FILE_HDR *)OPENSSL_malloc(HEADER_SIZE);
/* initialise 512 bytes */
memset(header, 0, sizeof(MSI_FILE_HDR));
memcpy(header->signature, data + HEADER_SIGNATURE, sizeof header->signature);
/* Minor Version field SHOULD be set to 0x003E. */
header->minorVersion = GET_UINT16_LE(data + HEADER_MINOR_VER);
if (header->minorVersion !=0x003E ) {
printf("Warning: Minor Version field SHOULD be 0x003E, but is: 0x%04X\n", header->minorVersion);
}
/* Major Version field MUST be set to either 0x0003 (version 3) or 0x0004 (version 4). */
header->majorVersion = GET_UINT16_LE(data + HEADER_MAJOR_VER);
if (header->majorVersion != 0x0003 && header->majorVersion != 0x0004) {
printf("Unknown Major Version: 0x%04X\n", header->majorVersion);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Byte Order field MUST be set to 0xFFFE, specifies little-endian byte order. */
header->byteOrder = GET_UINT16_LE(data + HEADER_BYTE_ORDER);
if (header->byteOrder != 0xFFFE) {
printf("Unknown Byte Order: 0x%04X\n", header->byteOrder);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Sector Shift field MUST be set to 0x0009, or 0x000c, depending on the Major Version field.
* This field specifies the sector size of the compound file as a power of 2. */
header->sectorShift = GET_UINT16_LE(data + HEADER_SECTOR_SHIFT);
if ((header->majorVersion == 0x0003 && header->sectorShift != 0x0009) ||
(header->majorVersion == 0x0004 && header->sectorShift != 0x000C)) {
printf("Unknown Sector Shift: 0x%04X\n", header->sectorShift);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Mini Sector Shift field MUST be set to 0x0006.
* This field specifies the sector size of the Mini Stream as a power of 2.
* The sector size of the Mini Stream MUST be 64 bytes. */
header->miniSectorShift = GET_UINT16_LE(data + HEADER_MINI_SECTOR_SHIFT);
if (header->miniSectorShift != 0x0006) {
printf("Unknown Mini Sector Shift: 0x%04X\n", header->miniSectorShift);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Number of Directory Sectors field contains the count of the number
* of directory sectors in the compound file.
* If Major Version is 3, the Number of Directory Sectors MUST be zero. */
header->numDirectorySector = GET_UINT32_LE(data + HEADER_DIR_SECTORS_NUM);
if (header->majorVersion == 0x0003 && header->numDirectorySector != 0x00000000) {
printf("Unsupported Number of Directory Sectors: 0x%08X\n", header->numDirectorySector);
OPENSSL_free(header);
return NULL; /* FAILED */
}
header->numFATSector = GET_UINT32_LE(data + HEADER_FAT_SECTORS_NUM);
header->firstDirectorySectorLocation = GET_UINT32_LE(data + HEADER_DIR_SECTOR_LOC);
header->transactionSignatureNumber = GET_UINT32_LE(data + HEADER_TRANSACTION);
/* Mini Stream Cutoff Size field MUST be set to 0x00001000.
* This field specifies the maximum size of a user-defined data stream that is allocated
* from the mini FAT and mini stream, and that cutoff is 4,096 bytes.
* Any user-defined data stream that is greater than or equal to this cutoff size
* must be allocated as normal sectors from the FAT. */
header->miniStreamCutoffSize = GET_UINT32_LE(data + HEADER_MINI_STREAM_CUTOFF);
if (header->miniStreamCutoffSize != 0x00001000) {
printf("Unsupported Mini Stream Cutoff Size: 0x%08X\n", header->miniStreamCutoffSize);
OPENSSL_free(header);
return NULL; /* FAILED */
}
header->firstMiniFATSectorLocation = GET_UINT32_LE(data + HEADER_MINI_FAT_SECTOR_LOC);
header->numMiniFATSector = GET_UINT32_LE(data + HEADER_MINI_FAT_SECTORS_NUM);
header->firstDIFATSectorLocation = GET_UINT32_LE(data + HEADER_DIFAT_SECTOR_LOC);
header->numDIFATSector = GET_UINT32_LE(data + HEADER_DIFAT_SECTORS_NUM);
memcpy(header->headerDIFAT, data + HEADER_DIFAT, sizeof header->headerDIFAT);
return header;
}
/* Parse MSI_ENTRY struct */
static MSI_ENTRY *parse_entry(MSI_FILE *msi, const u_char *data)
{
uint32_t inlen;
MSI_ENTRY *entry = (MSI_ENTRY *)OPENSSL_malloc(sizeof(MSI_ENTRY));
/* initialise 128 bytes */
memset(entry, 0, sizeof(MSI_ENTRY));
entry->nameLen = GET_UINT16_LE(data + DIRENT_NAME_LEN);
/* This length MUST NOT exceed 64, the maximum size of the Directory Entry Name field */
if (entry->nameLen == 0 || entry->nameLen > 64) {
printf("Corrupted Directory Entry Name Length\n");
OPENSSL_free(entry);
return NULL; /* FAILED */
}
memcpy(entry->name, data + DIRENT_NAME, entry->nameLen);
entry->type = GET_UINT8_LE(data + DIRENT_TYPE);
entry->colorFlag = GET_UINT8_LE(data + DIRENT_COLOUR);
entry->leftSiblingID = GET_UINT32_LE(data + DIRENT_LEFT_SIBLING_ID);
entry->rightSiblingID = GET_UINT32_LE(data + DIRENT_RIGHT_SIBLING_ID);
entry->childID = GET_UINT32_LE(data + DIRENT_CHILD_ID);
memcpy(entry->clsid, data + DIRENT_CLSID, 16);
memcpy(entry->stateBits, data + DIRENT_STATE_BITS, 4);
memcpy(entry->creationTime, data + DIRENT_CREATE_TIME, 8);
memcpy(entry->modifiedTime, data + DIRENT_MODIFY_TIME, 8);
entry->startSectorLocation = GET_UINT32_LE(data + DIRENT_START_SECTOR_LOC);
memcpy(entry->size, data + DIRENT_FILE_SIZE, 8);
/* For a version 3 compound file 512-byte sector size, the value of this field
MUST be less than or equal to 0x80000000 */
inlen = GET_UINT32_LE(entry->size);
if ((msi->m_sectorSize == 0x0200 && inlen > 0x80000000)
|| (msi->m_bufferLen <= inlen)) {
printf("Corrupted Stream Size 0x%08X\n", inlen);
OPENSSL_free(entry);
return NULL; /* FAILED */
}
return entry;
}
/*
* Get entry (directory or file) by its ID.
* Pass "0" to get the root directory entry. -- This is the start point to navigate the compound file.
* Use the returned object to access child entries.
*/
static MSI_ENTRY *get_entry(MSI_FILE *msi, uint32_t entryID, int is_root)
{
uint32_t sector = 0;
uint32_t offset = 0;
const u_char *address;
/* Corrupted file */
if (!is_root && entryID == 0) {
printf("Corrupted entryID\n");
return NULL; /* FAILED */
}
if (msi->m_bufferLen / sizeof(MSI_ENTRY) <= entryID) {
printf("Invalid argument entryID\n");
return NULL; /* FAILED */
}
/* The first entry in the first sector of the directory chain is known as
the root directory entry so it can not contain the directory stream */
if (msi->m_hdr->firstDirectorySectorLocation == 0 && entryID == 0) {
printf("Corrupted First Directory Sector Location\n");
return NULL; /* FAILED */
}
if (!locate_final_sector(msi, msi->m_hdr->firstDirectorySectorLocation,
entryID * sizeof(MSI_ENTRY), &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NULL; /* FAILED */
}
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a final address\n");
return NULL; /* FAILED */
}
return parse_entry(msi, address);
}
MSI_ENTRY *msi_root_entry_get(MSI_FILE *msi)
{
return get_entry(msi, 0, TRUE);
}
/* Parse MSI_FILE struct */
MSI_FILE *msi_file_new(char *buffer, uint32_t len)
{
MSI_FILE *msi;
MSI_ENTRY *root;
MSI_FILE_HDR *header;
if (buffer == NULL || len == 0) {
printf("Invalid argument\n");
return NULL; /* FAILED */
}
header = parse_header(buffer);
if (!header) {
printf("Failed to parse MSI_FILE_HDR struct\n");
return NULL; /* FAILED */
}
msi = (MSI_FILE *)OPENSSL_malloc(sizeof(MSI_FILE));
msi->m_buffer = (const u_char *)(buffer);
msi->m_bufferLen = len;
msi->m_hdr = header;
msi->m_sectorSize = 1 << msi->m_hdr->sectorShift;
msi->m_minisectorSize = 1 << msi->m_hdr->miniSectorShift;
msi->m_miniStreamStartSector = 0;
if (msi->m_bufferLen < sizeof *(msi->m_hdr) ||
memcmp(msi->m_hdr->signature, msi_magic, sizeof msi_magic)) {
printf("Wrong file format\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
/* The file must contains at least 3 sectors */
if (msi->m_bufferLen < msi->m_sectorSize * 3) {
printf("The file must contains at least 3 sectors\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
root = msi_root_entry_get(msi);
if (!root) {
printf("Failed to get msi root entry\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
msi->m_miniStreamStartSector = root->startSectorLocation;
OPENSSL_free(root);
return msi;
}
/* Recursively create a tree of MSI_DIRENT structures */
int msi_dirent_new(MSI_FILE *msi, MSI_ENTRY *entry, MSI_DIRENT *parent, MSI_DIRENT **ret)
{
MSI_DIRENT *dirent;
static int cnt;
static MSI_DIRENT *tortoise, *hare;
if (!entry) {
return 1; /* OK */
}
if (entry->nameLen == 0 || entry->nameLen > 64) {
printf("Corrupted Directory Entry Name Length\n");
return 0; /* FAILED */
}
/* detect cycles in previously visited entries (parents, siblings) */
if (!ret) { /* initialized (non-root entry) */
if ((entry->leftSiblingID != NOSTREAM && tortoise->entry->leftSiblingID == entry->leftSiblingID)
|| (entry->rightSiblingID != NOSTREAM && tortoise->entry->rightSiblingID == entry->rightSiblingID)
|| (entry->childID != NOSTREAM && tortoise->entry->childID == entry->childID)) {
printf("MSI_ENTRY cycle detected at level %d\n", cnt);
return 0; /* FAILED */
}
}
dirent = (MSI_DIRENT *)OPENSSL_malloc(sizeof(MSI_DIRENT));
memcpy(dirent->name, entry->name, entry->nameLen);
dirent->nameLen = entry->nameLen;
dirent->type = entry->type;
dirent->entry = entry;
dirent->children = sk_MSI_DIRENT_new_null();
dirent->next = NULL; /* fail-safe */
/* Floyd's cycle-finding algorithm */
if (!ret) { /* initialized (non-root entry) */
if (cnt++ & 1) /* move the tortoise every other invocation of msi_dirent_new() */
tortoise = tortoise->next;
hare->next = dirent; /* build a linked list of visited entries */
hare = dirent; /* move the hare every time */
} else { /* initialization needed (root entry) */
cnt = 0;
tortoise = dirent;
hare = dirent;
}
if (parent && !sk_MSI_DIRENT_push(parent->children, dirent)) {
printf("Failed to insert MSI_DIRENT\n");
sk_MSI_DIRENT_free(dirent->children);
OPENSSL_free(dirent);
return 0; /* FAILED */
}
if (!recurse_entry(msi, entry->leftSiblingID, parent)
|| !recurse_entry(msi, entry->rightSiblingID, parent)
|| !recurse_entry(msi, entry->childID, dirent)) {
printf("Failed to add a sibling or a child to the tree\n");
sk_MSI_DIRENT_free(dirent->children);
OPENSSL_free(dirent);
return 0; /* FAILED */
}
if (ret)
*ret = dirent;
return 1; /* OK */
}
/* Add a sibling or a child to the tree */
/* NOTE: These links are a tree, not a linked list */
static int recurse_entry(MSI_FILE *msi, uint32_t entryID, MSI_DIRENT *parent)
{
MSI_ENTRY *node;
/* The special NOSTREAM (0xFFFFFFFF) value is used as a terminator */
if (entryID == NOSTREAM) /* stop condition */
return 1; /* OK */
node = get_entry(msi, entryID, FALSE);
if (!node) {
printf("Corrupted ID: 0x%08X\n", entryID);
return 0; /* FAILED */
}
if (!msi_dirent_new(msi, node, parent, NULL)) {
OPENSSL_free(node);
return 0; /* FAILED */
}
return 1; /* OK */
}
/* Return DigitalSignature and MsiDigitalSignatureEx */
MSI_ENTRY *msi_signatures_get(MSI_DIRENT *dirent, MSI_ENTRY **dse)
{
int i;
MSI_ENTRY *ds = NULL;
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))) {
ds = child->entry;
} else if (dse && !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex))) {
*dse = child->entry;
} else {
continue;
}
}
return ds;
}
void msi_file_free(MSI_FILE *msi)
{
if (!msi)
return;
OPENSSL_free(msi->m_hdr);
OPENSSL_free(msi);
}
/* Recursively free MSI_DIRENT struct */
void msi_dirent_free(MSI_DIRENT *dirent)
{
if (!dirent)
return;
sk_MSI_DIRENT_pop_free(dirent->children, msi_dirent_free);
OPENSSL_free(dirent->entry);
OPENSSL_free(dirent);
}
/* Sorted list of MSI streams in this order is needed for hashing */
static int dirent_cmp_hash(const MSI_DIRENT *const *a, const MSI_DIRENT *const *b)
{
const MSI_DIRENT *dirent_a = *a;
const MSI_DIRENT *dirent_b = *b;
int diff = memcmp(dirent_a->name, dirent_b->name, MIN(dirent_a->nameLen, dirent_b->nameLen));
/* apparently the longer wins */
if (diff == 0) {
return dirent_a->nameLen > dirent_b->nameLen ? -1 : 1;
}
return diff;
}
/* Sorting relationship for directory entries, the left sibling MUST always be less than the right sibling */
static int dirent_cmp_tree(const MSI_DIRENT *const *a, const MSI_DIRENT *const *b)
{
const MSI_DIRENT *dirent_a = *a;
const MSI_DIRENT *dirent_b = *b;
uint16_t codepoint_a, codepoint_b;
int i;
if (dirent_a->nameLen != dirent_b->nameLen) {
return dirent_a->nameLen < dirent_b->nameLen ? -1 : 1;
}
for (i=0; i<dirent_a->nameLen-2; i=i+2) {
codepoint_a = GET_UINT16_LE(dirent_a->name + i);
codepoint_b = GET_UINT16_LE(dirent_b->name + i);
if (codepoint_a != codepoint_b) {
return codepoint_a < codepoint_b ? -1 : 1;
}
}
return 0;
}
/*
* Calculate the pre-hash used for 'MsiDigitalSignatureEx'
* signatures in MSI files. The pre-hash hashes only metadata (file names,
* file sizes, creation times and modification times), whereas the basic
* 'DigitalSignature' MSI signature only hashes file content.
*
* The hash is written to the hash BIO.
*/
/* Hash a MSI stream's extended metadata */
static void prehash_metadata(MSI_ENTRY *entry, BIO *hash)
{
if (entry->type != DIR_ROOT) {
BIO_write(hash, entry->name, entry->nameLen - 2);
}
if (entry->type != DIR_STREAM) {
BIO_write(hash, entry->clsid, sizeof entry->clsid);
} else {
BIO_write(hash, entry->size, (sizeof entry->size)/2);
}
BIO_write(hash, entry->stateBits, sizeof entry->stateBits);
if (entry->type != DIR_ROOT) {
BIO_write(hash, entry->creationTime, sizeof entry->creationTime);
BIO_write(hash, entry->modifiedTime, sizeof entry->modifiedTime);
}
}
/* Recursively hash a MSI directory's extended metadata */
int msi_prehash_dir(MSI_DIRENT *dirent, BIO *hash, int is_root)
{
int i, ret = 0;
STACK_OF(MSI_DIRENT) *children = sk_MSI_DIRENT_dup(dirent->children);
if (dirent == NULL) {
goto out;
}
prehash_metadata(dirent->entry, hash);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_hash);
sk_MSI_DIRENT_sort(children);
for (i = 0; i < sk_MSI_DIRENT_num(children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
if (is_root && (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))
|| !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex)))) {
continue;
}
if (child->type == DIR_STREAM) {
prehash_metadata(child->entry, hash);
}
if (child->type == DIR_STORAGE) {
if (!msi_prehash_dir(child, hash, 0)) {
goto out;
}
}
}
ret = 1; /* OK */
out:
sk_MSI_DIRENT_free(children);
return ret;
}
/* Recursively hash a MSI directory (storage) */
int msi_hash_dir(MSI_FILE *msi, MSI_DIRENT *dirent, BIO *hash, int is_root)
{
int i, ret = 0;
STACK_OF(MSI_DIRENT) *children = sk_MSI_DIRENT_dup(dirent->children);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_hash);
sk_MSI_DIRENT_sort(children);
for (i = 0; i < sk_MSI_DIRENT_num(children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
if (is_root && (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))
|| !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex)))) {
continue;
}
if (child->type == DIR_STREAM) {
char *indata;
uint32_t inlen = GET_UINT32_LE(child->entry->size);
if (inlen == 0) {
continue;
}
indata = (char *)OPENSSL_malloc(inlen);
if (!msi_file_read(msi, child->entry, 0, indata, inlen)) {
printf("Failed to read stream data\n");
OPENSSL_free(indata);
goto out;
}
BIO_write(hash, indata, inlen);
OPENSSL_free(indata);
}
if (child->type == DIR_STORAGE) {
if (!msi_hash_dir(msi, child, hash, 0)) {
printf("Failed to hash a MSI storage\n");
goto out;
}
}
}
BIO_write(hash, dirent->entry->clsid, sizeof dirent->entry->clsid);
ret = 1; /* OK */
out:
sk_MSI_DIRENT_free(children);
return ret;
}
/* Compute a simple sha1/sha256 message digest of the MSI file */
int msi_calc_digest(char *indata, const EVP_MD *md, u_char *mdbuf, uint32_t fileend)
{
BIO *bio = NULL;
EVP_MD_CTX *mdctx;
uint32_t n;
int ret = 0;
bio = BIO_new_mem_buf(indata, fileend);
mdctx = EVP_MD_CTX_new();
if (!EVP_DigestInit(mdctx, md)) {
printf("Unable to set up the digest context\n");
goto out;
}
memset(mdbuf, 0, EVP_MAX_MD_SIZE);
(void)BIO_seek(bio, 0);
n = 0;
while (n < fileend) {
int l;
static u_char bfb[16*1024*1024];
uint32_t want = fileend - n;
if (want > sizeof bfb)
want = sizeof bfb;
l = BIO_read(bio, bfb, want);
if (l <= 0)
break;
EVP_DigestUpdate(mdctx, bfb, l);
n += l;
}
EVP_DigestFinal(mdctx, mdbuf, NULL);
ret = 1; /* OK */
out:
EVP_MD_CTX_free(mdctx);
BIO_free(bio);
return ret;
}
static void ministream_append(MSI_OUT *out, char *buf, int len)
{
uint32_t needSectors = (len + out->sectorSize - 1) / out->sectorSize;
if (out->miniStreamLen + len >= out->ministreamsMemallocCount * out->sectorSize) {
out->ministreamsMemallocCount += needSectors;
out->ministream = OPENSSL_realloc(out->ministream, out->ministreamsMemallocCount * out->sectorSize);
}
memcpy(out->ministream + out->miniStreamLen, buf, len);
out->miniStreamLen += len;
}
static void minifat_append(MSI_OUT *out, char *buf, int len)
{
if (out->minifatLen == out->minifatMemallocCount * out->sectorSize) {
out->minifatMemallocCount += 1;
out->minifat = OPENSSL_realloc(out->minifat, out->minifatMemallocCount * out->sectorSize);
}
memcpy(out->minifat + out->minifatLen, buf, len);
out->minifatLen += len;
}
static void fat_append(MSI_OUT *out, char *buf, int len)
{
if (out->fatLen == out->fatMemallocCount * out->sectorSize) {
out->fatMemallocCount += 1;
out->fat = OPENSSL_realloc(out->fat, out->fatMemallocCount * out->sectorSize);
}
memcpy(out->fat + out->fatLen, buf, len);
out->fatLen += len;
}
int msi_dirent_delete(MSI_DIRENT *dirent, const u_char *name, uint16_t nameLen)
{
int i;
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (memcmp(child->name, name, MIN(child->nameLen, nameLen))) {
continue;
}
if (child->type != DIR_STREAM) {
printf("Can't delete or replace storages\n");
return 0; /* FAILED */
}
sk_MSI_DIRENT_delete(dirent->children, i);
msi_dirent_free(child);
}
return 1; /* OK */
}
static MSI_DIRENT *dirent_add(const u_char *name, uint16_t nameLen)
{
MSI_DIRENT *dirent = (MSI_DIRENT *)OPENSSL_malloc(sizeof(MSI_DIRENT));
MSI_ENTRY *entry = (MSI_ENTRY *)OPENSSL_malloc(sizeof(MSI_ENTRY));
memcpy(dirent->name, name, nameLen);
dirent->nameLen = nameLen;
dirent->type = DIR_STREAM;
dirent->children = sk_MSI_DIRENT_new_null();
memcpy(entry->name, name, nameLen);
entry->nameLen = nameLen;
entry->type = DIR_STREAM;
entry->colorFlag = BLACK_COLOR; /* make everything black */
entry->leftSiblingID = NOSTREAM;
entry->rightSiblingID = NOSTREAM;
entry->childID = NOSTREAM;
memset(entry->clsid, 0, 16);
memset(entry->stateBits, 0, 4);
memset(entry->creationTime, 0, 8);
memset(entry->modifiedTime, 0, 8);
entry->startSectorLocation = NOSTREAM;
memset(entry->size, 0, 8);
dirent->entry = entry;
return dirent;
}
static int dirent_insert(MSI_DIRENT *dirent, const u_char *name, uint16_t nameLen)
{
MSI_DIRENT *new_dirent;
if (!msi_dirent_delete(dirent, name, nameLen)) {
return 0; /* FAILED */
}
/* create new dirent */
new_dirent = dirent_add(name, nameLen);
sk_MSI_DIRENT_push(dirent->children, new_dirent);
return 1; /* OK */
}
static int signature_insert(MSI_DIRENT *dirent, int len_msiex)
{
if (len_msiex > 0) {
if (!dirent_insert(dirent, digital_signature_ex, sizeof digital_signature_ex)) {
return 0; /* FAILED */
}
} else {
if (!msi_dirent_delete(dirent, digital_signature_ex, sizeof digital_signature_ex)) {
return 0; /* FAILED */
}
}
if (!dirent_insert(dirent, digital_signature, sizeof digital_signature)) {
return 0; /* FAILED */
}
return 1; /* OK */
}
static int stream_read(MSI_FILE *msi, MSI_ENTRY *entry, u_char *p_msi, int len_msi,
u_char *p_msiex, int len_msiex, char **indata, int inlen, int is_root)
{
if (is_root && !memcmp(entry->name, digital_signature, sizeof digital_signature)) {
*indata = (char *)p_msi;
inlen = len_msi;
} else if (is_root && !memcmp(entry->name, digital_signature_ex, sizeof digital_signature_ex)) {
*indata = (char *)p_msiex;
inlen = len_msiex;
} else {
if (!msi_file_read(msi, entry, 0, *indata, inlen)) {
printf("Failed to read stream data\n");
return 0; /* FAILED */
}
}
return inlen;
}
/* Recursively handle data from MSI_DIRENT struct */
static int stream_handle(MSI_FILE *msi, MSI_DIRENT *dirent, u_char *p_msi, int len_msi,
u_char *p_msiex, int len_msiex, BIO *outdata, MSI_OUT *out, int is_root)
{
int i;
if (dirent->type == DIR_ROOT) {
if (len_msi > 0 && !signature_insert(dirent, len_msiex)) {
printf("Insert new signature failed\n");
return 0; /* FAILED */
}
out->ministreamsMemallocCount = (GET_UINT32_LE(dirent->entry->size) + out->sectorSize - 1)/out->sectorSize;
out->ministream = OPENSSL_malloc(out->ministreamsMemallocCount * out->sectorSize);
}
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (child->type == DIR_STORAGE) {
if (!stream_handle(msi, child, NULL, 0, NULL, 0, outdata, out, 0)) {
return 0; /* FAILED */
}
} else { /* DIR_STREAM */
uint32_t inlen = GET_UINT32_LE(child->entry->size);
char *indata = (char *)OPENSSL_malloc(inlen);
char buf[MAX_SECTOR_SIZE];
inlen = stream_read(msi, child->entry, p_msi, len_msi, p_msiex, len_msiex, &indata, inlen, is_root);
if (inlen == 0) {
continue;
}
/* set the size of the user-defined data if this is a stream object */
PUT_UINT32_LE(inlen, buf);
memcpy(child->entry->size, buf, sizeof child->entry->size);
if (inlen < MINI_STREAM_CUTOFF_SIZE) {
/* set the index into the mini FAT to track the chain of sectors through the mini stream */
child->entry->startSectorLocation = out->miniSectorNum;
ministream_append(out, indata, inlen);
/* fill to the end with known data, such as all zeroes */
if (inlen % msi->m_minisectorSize > 0) {
int remain = msi->m_minisectorSize - inlen % msi->m_minisectorSize;
memset(buf, 0, remain);
ministream_append(out, buf, remain);
}
while (inlen > msi->m_minisectorSize) {
out->miniSectorNum += 1;
PUT_UINT32_LE(out->miniSectorNum, buf);
minifat_append(out, buf, 4);
inlen -= (uint32_t)msi->m_minisectorSize;
}
PUT_UINT32_LE(ENDOFCHAIN, buf);
minifat_append(out, buf, 4);
out->miniSectorNum += 1;
} else {
/* set the first sector location if this is a stream object */
child->entry->startSectorLocation = out->sectorNum;
/* stream save */
BIO_write(outdata, indata, inlen);
/* fill to the end with known data, such as all zeroes */
if (inlen % out->sectorSize > 0) {
int remain = out->sectorSize - inlen % out->sectorSize;
memset(buf, 0, remain);
BIO_write(outdata, buf, remain);
}
/* set a sector chain in the FAT */
while (inlen > out->sectorSize) {
out->sectorNum += 1;
PUT_UINT32_LE(out->sectorNum, buf);
fat_append(out, buf, 4);
inlen -= (uint32_t)out->sectorSize;
}
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += 1;
}
OPENSSL_free(indata);
}
}
return 1; /* OK */
}
static void ministream_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
int remain, i;
int ministreamSectorsCount = (out->miniStreamLen + out->sectorSize - 1) / out->sectorSize;
/* set the first sector of the mini stream in the entry root object */
dirent->entry->startSectorLocation = out->sectorNum;
/* ministream save */
BIO_write(outdata, out->ministream, out->miniStreamLen);
OPENSSL_free(out->ministream);
/* fill to the end with known data, such as all zeroes */
if (out->miniStreamLen % out->sectorSize > 0) {
remain = out->sectorSize - out->miniStreamLen % out->sectorSize;
memset(buf, 0, remain);
BIO_write(outdata, buf, remain);
}
/* set a sector chain in the FAT */
for (i=1; i<ministreamSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the mini stream data */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += ministreamSectorsCount;
}
static void minifat_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
int i,remain;
/* set Mini FAT Starting Sector Location in the header */
if (out->minifatLen == 0) {
PUT_UINT32_LE(ENDOFCHAIN, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTOR_LOC, buf, 4);
return;
}
PUT_UINT32_LE(out->sectorNum, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTOR_LOC, buf, 4);
/* minifat save */
BIO_write(outdata, out->minifat, out->minifatLen);
/* marks the end of the stream */
PUT_UINT32_LE(ENDOFCHAIN, buf);
BIO_write(outdata, buf, 4);
out->minifatLen += 4;
/* empty unallocated free sectors in the last Mini FAT sector */
if (out->minifatLen % out->sectorSize > 0) {
remain = out->sectorSize - out->minifatLen % out->sectorSize;
memset(buf, FREESECT, remain);
BIO_write(outdata, buf, remain);
}
/* set a sector chain in the FAT */
out->minifatSectorsCount = (out->minifatLen + out->sectorSize - 1) / out->sectorSize;
for (i=1; i<out->minifatSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the mini FAT chain */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += out->minifatSectorsCount;
}
static char *msi_dirent_get(MSI_ENTRY *entry)
{
char buf[8];
char *data = OPENSSL_malloc(DIRENT_SIZE);
/* initialise 128 bytes */
memset(data, 0, DIRENT_SIZE);
memcpy(data + DIRENT_NAME, entry->name, entry->nameLen);
memset(data + DIRENT_NAME + entry->nameLen, 0, DIRENT_MAX_NAME_SIZE - entry->nameLen);
PUT_UINT16_LE(entry->nameLen, buf);
memcpy(data + DIRENT_NAME_LEN, buf, 2);
PUT_UINT8_LE(entry->type, buf);
memcpy(data + DIRENT_TYPE, buf, 1);
PUT_UINT8_LE(entry->colorFlag, buf);
memcpy(data + DIRENT_COLOUR, buf, 1);
PUT_UINT32_LE(entry->leftSiblingID, buf);
memcpy(data + DIRENT_LEFT_SIBLING_ID, buf, 4);
PUT_UINT32_LE(entry->rightSiblingID, buf);
memcpy(data + DIRENT_RIGHT_SIBLING_ID, buf, 4);
PUT_UINT32_LE(entry->childID, buf);
memcpy(data + DIRENT_CHILD_ID, buf, 4);
memcpy(data + DIRENT_CLSID, entry->clsid, 16);
memcpy(data + DIRENT_STATE_BITS, entry->stateBits, 4);
memcpy(data + DIRENT_CREATE_TIME, entry->creationTime, 8);
memcpy(data + DIRENT_MODIFY_TIME, entry->modifiedTime, 8);
PUT_UINT32_LE(entry->startSectorLocation, buf);
memcpy(data + DIRENT_START_SECTOR_LOC, buf, 4);
memcpy(data + DIRENT_FILE_SIZE, entry->size, 4);
memset(data + DIRENT_FILE_SIZE + 4, 0, 4);
return data;
}
static char *msi_unused_dirent_get()
{
char *data = OPENSSL_malloc(DIRENT_SIZE);
/* initialise 127 bytes */
memset(data, 0, DIRENT_SIZE);
memset(data + DIRENT_LEFT_SIBLING_ID, NOSTREAM, 4);
memset(data + DIRENT_RIGHT_SIBLING_ID, NOSTREAM, 4);
memset(data + DIRENT_CHILD_ID, NOSTREAM, 4);
return data;
}
static int dirents_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out, int *streamId, int count, int last)
{
int i, childenNum;
char *entry;
STACK_OF(MSI_DIRENT) *children = sk_MSI_DIRENT_dup(dirent->children);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_tree);
sk_MSI_DIRENT_sort(children);
childenNum = sk_MSI_DIRENT_num(children);
/* make everything black */
dirent->entry->colorFlag = BLACK_COLOR;
dirent->entry->leftSiblingID = NOSTREAM;
if (dirent->type == DIR_STORAGE) {
if (last) {
dirent->entry->rightSiblingID = NOSTREAM;
} else {
/* make linked list rather than tree, only use next - right sibling */
count += childenNum;
dirent->entry->rightSiblingID = *streamId + count + 1;
}
} else { /* DIR_ROOT */
dirent->entry->rightSiblingID = NOSTREAM;
}
dirent->entry->childID = *streamId + 1;
entry = msi_dirent_get(dirent->entry);
BIO_write(outdata, entry, DIRENT_SIZE);
OPENSSL_free(entry);
out->dirtreeLen += DIRENT_SIZE;
for (i = 0; i < childenNum; i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
int last_dir = i == childenNum - 1 ? 1 : 0;
*streamId += 1;
if (child->type == DIR_STORAGE) {
count += dirents_save(child, outdata, out, streamId, count, last_dir);
} else { /* DIR_STREAM */
count = 0;
child->entry->colorFlag = BLACK_COLOR;
child->entry->leftSiblingID = NOSTREAM;
if (last_dir) {
child->entry->rightSiblingID = NOSTREAM;
} else {
child->entry->rightSiblingID = *streamId + 1;
}
entry = msi_dirent_get(child->entry);
BIO_write(outdata, entry, DIRENT_SIZE);
OPENSSL_free(entry);
out->dirtreeLen += DIRENT_SIZE;
}
}
sk_MSI_DIRENT_free(children);
return count;
}
static void dirtree_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
char *unused_entry;
int i, remain;
int streamId = 0;
/* set Directory Starting Sector Location in the header */
PUT_UINT32_LE(out->sectorNum, buf);
memcpy(out->header + HEADER_DIR_SECTOR_LOC, buf, 4);
/* set the size of the mini stream in the root object */
if (dirent->type == DIR_ROOT) {
PUT_UINT32_LE(out->miniStreamLen, buf);
memcpy(dirent->entry->size, buf, sizeof dirent->entry->size);
}
/* sort and save all directory entries */
dirents_save(dirent, outdata, out, &streamId, 0, 0);
/* set free (unused) directory entries */
unused_entry = msi_unused_dirent_get();
if (out->dirtreeLen % out->sectorSize > 0) {
remain = out->sectorSize - out->dirtreeLen % out->sectorSize;
while (remain > 0) {
BIO_write(outdata, unused_entry, DIRENT_SIZE);
remain -= DIRENT_SIZE;
}
}
OPENSSL_free(unused_entry);
/* set a sector chain in the FAT */
out->dirtreeSectorsCount = (out->dirtreeLen + out->sectorSize - 1) / out->sectorSize;
for (i=1; i<out->dirtreeSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the directory chain */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += out->dirtreeSectorsCount;
}
static int fat_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
int i, remain;
remain = (out->fatLen + out->sectorSize - 1) / out->sectorSize;
out->fatSectorsCount = (out->fatLen + remain * 4 + out->sectorSize - 1) / out->sectorSize;
/* mark FAT sectors in the FAT chain */
PUT_UINT32_LE(FATSECT, buf);
for (i=0; i<out->fatSectorsCount; i++) {
fat_append(out, buf, 4);
}
/* set 109 FAT sectors in HEADER_DIFAT table */
for (i=0; i<MIN(out->fatSectorsCount, DIFAT_IN_HEADER); i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
memcpy(out->header + HEADER_DIFAT + i * 4, buf, 4);
}
out->sectorNum += out->fatSectorsCount;
if (out->fatSectorsCount > DIFAT_IN_HEADER) {
/* TODO set FAT sectors in DIFAT sector */
printf("DIFAT sectors are not supported\n");
return 0; /* FAILED */
}
/* empty unallocated free sectors in the last FAT sector */
if (out->fatLen % out->sectorSize > 0) {
remain = out->sectorSize - out->fatLen % out->sectorSize;
memset(buf, FREESECT, remain);
fat_append(out, buf, remain);
}
BIO_write(outdata, out->fat, out->fatLen);
return 1; /* OK */
}
static void header_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
int remain;
/* set Number of FAT sectors in the header */
PUT_UINT32_LE(out->fatSectorsCount, buf);
memcpy(out->header + HEADER_FAT_SECTORS_NUM, buf, 4);
/* set Number of Mini FAT sectors in the header */
PUT_UINT32_LE(out->minifatSectorsCount, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTORS_NUM, buf, 4);
/* set Number of Directory Sectors in the header if Major Version is 4 */
if (out->sectorSize == 4096) {
PUT_UINT32_LE(out->dirtreeSectorsCount, buf);
memcpy(out->header + HEADER_DIR_SECTORS_NUM, buf, 4);
}
(void)BIO_seek(outdata, 0);
BIO_write(outdata, out->header, HEADER_SIZE);
remain = out->sectorSize - HEADER_SIZE;
memset(buf, 0, remain);
BIO_write(outdata, buf, remain);
}
static char *header_new(MSI_FILE_HDR *hdr, MSI_OUT *out)
{
int i;
char buf[4];
char *data = OPENSSL_malloc(HEADER_SIZE);
static u_char dead_food[] = {
0xde, 0xad, 0xf0, 0x0d
};
/* initialise 512 bytes */
memset(data, 0, HEADER_SIZE);
memcpy(data + HEADER_SIGNATURE, msi_magic, sizeof msi_magic);
memset(data + HEADER_CLSID, 0, 16);
PUT_UINT16_LE(hdr->minorVersion, buf);
memcpy(data + HEADER_MINOR_VER, buf, 2);
if (out->sectorSize == 4096) {
PUT_UINT16_LE(0x0004, buf);
} else {
PUT_UINT16_LE(0x0003, buf);
}
memcpy(data + HEADER_MAJOR_VER, buf, 2);
PUT_UINT16_LE(hdr->byteOrder, buf);
memcpy(data + HEADER_BYTE_ORDER, buf, 2);
PUT_UINT16_LE(hdr->sectorShift, buf);
if (out->sectorSize == 4096) {
PUT_UINT16_LE(0x000C, buf);
} else {
PUT_UINT16_LE(0x0009, buf);
}
memcpy(data + HEADER_SECTOR_SHIFT, buf, 2);
PUT_UINT16_LE(hdr->miniSectorShift, buf);
memcpy(data + HEADER_MINI_SECTOR_SHIFT, buf, 2);
memset(data + RESERVED, 0, 6);
memset(data + HEADER_DIR_SECTORS_NUM, 0, 4); /* not used for version 3 */
memcpy(data + HEADER_FAT_SECTORS_NUM, dead_food, 4);
memcpy(data + HEADER_DIR_SECTOR_LOC, dead_food, 4);
memset(data + HEADER_TRANSACTION, 0, 4); /* reserved */
PUT_UINT32_LE(MINI_STREAM_CUTOFF_SIZE, buf);
memcpy(data + HEADER_MINI_STREAM_CUTOFF, buf, 4);
memcpy(data + HEADER_MINI_FAT_SECTOR_LOC, dead_food, 4);
memcpy(data + HEADER_MINI_FAT_SECTORS_NUM, dead_food, 4);
PUT_UINT32_LE(ENDOFCHAIN, buf);
memcpy(data + HEADER_DIFAT_SECTOR_LOC, buf, 4);
memset(data + HEADER_DIFAT_SECTORS_NUM, 0, 4); /* no DIFAT */
memcpy(data + HEADER_DIFAT, dead_food, 4); /* sector number for FAT */
for (i = 1; i < DIFAT_IN_HEADER; i++) {
memset(data + HEADER_DIFAT + 4*i, FREESECT, 4); /* free FAT sectors */
}
return data;
}
static int msiout_set(MSI_FILE *msi, int len_msi, int len_msiex, MSI_OUT *out)
{
int msi_size, msiex_size;
out->sectorSize = msi->m_sectorSize;
if (len_msi <= MINI_STREAM_CUTOFF_SIZE) {
msi_size = ((len_msi + msi->m_minisectorSize - 1) / msi->m_minisectorSize) * msi->m_minisectorSize;
} else {
msi_size = ((len_msi + msi->m_sectorSize - 1) / msi->m_sectorSize) * msi->m_sectorSize;
}
msiex_size = ((len_msiex + msi->m_minisectorSize - 1) / msi->m_minisectorSize) * msi->m_minisectorSize;
/*
* no DIFAT sectors will be needed in a file that is smaller than
* 6,813 MB (version 3 files), respectively 436,004 MB (version 4 files)
*/
if (msi->m_bufferLen + msi_size + msiex_size > 7143936) {
out->sectorSize = 4096;
}
if (msi->m_bufferLen + msi_size + msiex_size > 457183232) {
printf("DIFAT sectors are not supported\n");
return 0;/* FAILED */
}
out->header = header_new(msi->m_hdr, out);
out->minifatMemallocCount = msi->m_hdr->numMiniFATSector;
out->fatMemallocCount = msi->m_hdr->numFATSector;
out->ministream = NULL;
out->minifat = OPENSSL_malloc(out->minifatMemallocCount * out->sectorSize);
out->fat = OPENSSL_malloc(out->fatMemallocCount * out->sectorSize);
out->miniSectorNum = 0;
out->sectorNum = 0;
return 1; /* OK */
}
int msi_file_write(MSI_FILE *msi, MSI_DIRENT *dirent, u_char *p_msi, int len_msi,
u_char *p_msiex, int len_msiex, BIO *outdata)
{
MSI_OUT out;
int ret = 0;
memset(&out, 0, sizeof(MSI_OUT));
if (!msiout_set(msi, len_msi, len_msiex, &out)) {
goto out; /* FAILED */
}
(void)BIO_seek(outdata, out.sectorSize);
if (!stream_handle(msi, dirent, p_msi, len_msi, p_msiex, len_msiex, outdata, &out, 1)) {
goto out; /* FAILED */
}
ministream_save(dirent, outdata, &out);
minifat_save(outdata, &out);
dirtree_save(dirent, outdata, &out);
if (!fat_save(outdata, &out)) {
goto out; /* FAILED */
}
header_save(outdata, &out);
ret = 1; /* OK */
out:
OPENSSL_free(out.header);
OPENSSL_free(out.fat);
OPENSSL_free(out.minifat);
return ret;
}
/*
Local Variables:
c-basic-offset: 4
tab-width: 4
indent-tabs-mode: t
End:
vim: set ts=4 noexpandtab:
*/