osslsigncode/msi.c

2343 lines
83 KiB
C

/*
* MSI file support library
*
* Copyright (C) 2021-2023 Michał Trojnara <Michal.Trojnara@stunnel.org>
* Author: Małgorzata Olszówka <Malgorzata.Olszowka@stunnel.org>
*
* Reference specifications:
* http://en.wikipedia.org/wiki/Compound_File_Binary_Format
* https://msdn.microsoft.com/en-us/library/dd942138.aspx
* https://github.com/microsoft/compoundfilereader
*/
#include "osslsigncode.h"
#include "helpers.h"
#define MAXREGSECT 0xfffffffa /* maximum regular sector number */
#define DIFSECT 0xfffffffc /* specifies a DIFAT sector in the FAT */
#define FATSECT 0xfffffffd /* specifies a FAT sector in the FAT */
#define ENDOFCHAIN 0xfffffffe /* end of a linked chain of sectors */
#define NOSTREAM 0xffffffff /* terminator or empty pointer */
#define FREESECT 0xffffffff /* empty unallocated free sectors */
#define DIR_UNKNOWN 0
#define DIR_STORAGE 1
#define DIR_STREAM 2
#define DIR_ROOT 5
#define RED_COLOR 0
#define BLACK_COLOR 1
#define DIFAT_IN_HEADER 109
#define MINI_STREAM_CUTOFF_SIZE 0x00001000 /* 4096 bytes */
#define HEADER_SIZE 0x200 /* 512 bytes, independent of sector size */
#define MAX_SECTOR_SIZE 0x1000 /* 4096 bytes */
#define HEADER_SIGNATURE 0x00 /* 0xD0, 0xCF, 0x11, 0xE0, 0xA1, 0xB1, 0x1A, 0xE1 */
#define HEADER_CLSID 0x08 /* reserved and unused */
#define HEADER_MINOR_VER 0x18 /* SHOULD be set to 0x003E */
#define HEADER_MAJOR_VER 0x1a /* MUST be set to either 0x0003 (version 3) or 0x0004 (version 4) */
#define HEADER_BYTE_ORDER 0x1c /* 0xfe 0xff == Intel Little Endian */
#define HEADER_SECTOR_SHIFT 0x1e /* MUST be set to 0x0009, or 0x000c */
#define HEADER_MINI_SECTOR_SHIFT 0x20 /* MUST be set to 0x0006 */
#define RESERVED 0x22 /* reserved and unused */
#define HEADER_DIR_SECTORS_NUM 0x28
#define HEADER_FAT_SECTORS_NUM 0x2c
#define HEADER_DIR_SECTOR_LOC 0x30
#define HEADER_TRANSACTION 0x34
#define HEADER_MINI_STREAM_CUTOFF 0x38 /* 4096 bytes */
#define HEADER_MINI_FAT_SECTOR_LOC 0x3c
#define HEADER_MINI_FAT_SECTORS_NUM 0x40
#define HEADER_DIFAT_SECTOR_LOC 0x44
#define HEADER_DIFAT_SECTORS_NUM 0x48
#define HEADER_DIFAT 0x4c
#define DIRENT_SIZE 0x80 /* 128 bytes */
#define DIRENT_MAX_NAME_SIZE 0x40 /* 64 bytes */
#define DIRENT_NAME 0x00
#define DIRENT_NAME_LEN 0x40 /* length in bytes incl 0 terminator */
#define DIRENT_TYPE 0x42
#define DIRENT_COLOUR 0x43
#define DIRENT_LEFT_SIBLING_ID 0x44
#define DIRENT_RIGHT_SIBLING_ID 0x48
#define DIRENT_CHILD_ID 0x4c
#define DIRENT_CLSID 0x50
#define DIRENT_STATE_BITS 0x60
#define DIRENT_CREATE_TIME 0x64
#define DIRENT_MODIFY_TIME 0x6c
#define DIRENT_START_SECTOR_LOC 0x74
#define DIRENT_FILE_SIZE 0x78
static const u_char msi_magic[] = {
0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1
};
static const u_char digital_signature[] = {
0x05, 0x00, 0x44, 0x00, 0x69, 0x00, 0x67, 0x00,
0x69, 0x00, 0x74, 0x00, 0x61, 0x00, 0x6C, 0x00,
0x53, 0x00, 0x69, 0x00, 0x67, 0x00, 0x6E, 0x00,
0x61, 0x00, 0x74, 0x00, 0x75, 0x00, 0x72, 0x00,
0x65, 0x00, 0x00, 0x00
};
static const u_char digital_signature_ex[] = {
0x05, 0x00, 0x4D, 0x00, 0x73, 0x00, 0x69, 0x00,
0x44, 0x00, 0x69, 0x00, 0x67, 0x00, 0x69, 0x00,
0x74, 0x00, 0x61, 0x00, 0x6C, 0x00, 0x53, 0x00,
0x69, 0x00, 0x67, 0x00, 0x6E, 0x00, 0x61, 0x00,
0x74, 0x00, 0x75, 0x00, 0x72, 0x00, 0x65, 0x00,
0x45, 0x00, 0x78, 0x00, 0x00, 0x00
};
static const u_char msi_root_entry[] = {
0x52, 0x00, 0x6F, 0x00, 0x6F, 0x00, 0x74, 0x00,
0x20, 0x00, 0x45, 0x00, 0x6E, 0x00, 0x74, 0x00,
0x72, 0x00, 0x79, 0x00, 0x00, 0x00
};
static const u_char msi_zeroes[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
typedef struct {
ASN1_INTEGER *a;
ASN1_OCTET_STRING *string;
ASN1_INTEGER *b;
ASN1_INTEGER *c;
ASN1_INTEGER *d;
ASN1_INTEGER *e;
ASN1_INTEGER *f;
} SpcSipInfo;
DECLARE_ASN1_FUNCTIONS(SpcSipInfo)
ASN1_SEQUENCE(SpcSipInfo) = {
ASN1_SIMPLE(SpcSipInfo, a, ASN1_INTEGER),
ASN1_SIMPLE(SpcSipInfo, string, ASN1_OCTET_STRING),
ASN1_SIMPLE(SpcSipInfo, b, ASN1_INTEGER),
ASN1_SIMPLE(SpcSipInfo, c, ASN1_INTEGER),
ASN1_SIMPLE(SpcSipInfo, d, ASN1_INTEGER),
ASN1_SIMPLE(SpcSipInfo, e, ASN1_INTEGER),
ASN1_SIMPLE(SpcSipInfo, f, ASN1_INTEGER),
} ASN1_SEQUENCE_END(SpcSipInfo)
IMPLEMENT_ASN1_FUNCTIONS(SpcSipInfo)
typedef struct {
u_char signature[8]; /* 0xd0, 0xcf, 0x11, 0xe0, 0xa1, 0xb1, 0x1a, 0xe1 */
u_char unused_clsid[16]; /* reserved and unused */
uint16_t minorVersion;
uint16_t majorVersion;
uint16_t byteOrder;
uint16_t sectorShift; /* power of 2 */
uint16_t miniSectorShift; /* power of 2 */
u_char reserved[6]; /* reserved and unused */
uint32_t numDirectorySector;
uint32_t numFATSector;
uint32_t firstDirectorySectorLocation;
uint32_t transactionSignatureNumber; /* reserved */
uint32_t miniStreamCutoffSize;
uint32_t firstMiniFATSectorLocation;
uint32_t numMiniFATSector;
uint32_t firstDIFATSectorLocation;
uint32_t numDIFATSector;
uint32_t headerDIFAT[DIFAT_IN_HEADER];
} MSI_FILE_HDR;
typedef struct {
u_char name[DIRENT_MAX_NAME_SIZE];
uint16_t nameLen;
uint8_t type;
uint8_t colorFlag;
uint32_t leftSiblingID;
uint32_t rightSiblingID;
uint32_t childID;
u_char clsid[16];
u_char stateBits[4];
u_char creationTime[8];
u_char modifiedTime[8];
uint32_t startSectorLocation;
u_char size[8];
} MSI_ENTRY;
typedef struct msi_dirent_struct {
u_char name[DIRENT_MAX_NAME_SIZE];
uint16_t nameLen;
uint8_t type;
MSI_ENTRY *entry;
STACK_OF(MSI_DIRENT) *children;
struct msi_dirent_struct *next; /* for cycle detection */
} MSI_DIRENT;
DEFINE_STACK_OF(MSI_DIRENT)
typedef struct {
const u_char *m_buffer;
uint32_t m_bufferLen;
MSI_FILE_HDR *m_hdr;
uint32_t m_sectorSize;
uint32_t m_minisectorSize;
uint32_t m_miniStreamStartSector;
} MSI_FILE;
typedef struct {
char *header;
char *ministream;
char *minifat;
char *fat;
char *difat;
uint32_t dirtreeLen;
uint32_t miniStreamLen;
uint32_t minifatLen;
uint32_t fatLen;
uint32_t difatLen;
uint32_t ministreamsMemallocCount;
uint32_t minifatMemallocCount;
uint32_t fatMemallocCount;
uint32_t difatMemallocCount;
uint32_t dirtreeSectorsCount;
uint32_t minifatSectorsCount;
uint32_t fatSectorsCount;
uint32_t miniSectorNum;
uint32_t sectorNum;
uint32_t sectorSize;
} MSI_OUT;
struct msi_ctx_st {
MSI_FILE *msi;
MSI_DIRENT *dirent;
u_char *p_msiex; /* MsiDigitalSignatureEx stream data */
uint32_t len_msiex; /* MsiDigitalSignatureEx stream data length */
uint32_t fileend;
};
/* FILE_FORMAT method prototypes */
static FILE_FORMAT_CTX *msi_ctx_new(GLOBAL_OPTIONS *options, BIO *hash, BIO *outdata);
static ASN1_OBJECT *msi_spc_sip_info_get(u_char **p, int *plen, FILE_FORMAT_CTX *ctx);
static PKCS7 *msi_pkcs7_contents_get(FILE_FORMAT_CTX *ctx, BIO *hash, const EVP_MD *md);
static int msi_hash_length_get(FILE_FORMAT_CTX *ctx);
static int msi_check_file(FILE_FORMAT_CTX *ctx, int detached);
static u_char *msi_digest_calc(FILE_FORMAT_CTX *ctx, const EVP_MD *md);
static int msi_verify_digests(FILE_FORMAT_CTX *ctx, PKCS7 *p7);
static PKCS7 *msi_pkcs7_extract(FILE_FORMAT_CTX *ctx);
static PKCS7 *msi_pkcs7_extract_to_nest(FILE_FORMAT_CTX *ctx);
static int msi_remove_pkcs7(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata);
static int msi_process_data(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata);
static PKCS7 *msi_pkcs7_signature_new(FILE_FORMAT_CTX *ctx, BIO *hash);
static int msi_append_pkcs7(FILE_FORMAT_CTX *ctx, BIO *outdata, PKCS7 *p7);
static BIO *msi_bio_free(BIO *hash, BIO *outdata);
static void msi_ctx_cleanup(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata);
FILE_FORMAT file_format_msi = {
.ctx_new = msi_ctx_new,
.data_blob_get = msi_spc_sip_info_get,
.pkcs7_contents_get = msi_pkcs7_contents_get,
.hash_length_get = msi_hash_length_get,
.check_file = msi_check_file,
.digest_calc = msi_digest_calc,
.verify_digests = msi_verify_digests,
.pkcs7_extract = msi_pkcs7_extract,
.pkcs7_extract_to_nest = msi_pkcs7_extract_to_nest,
.remove_pkcs7 = msi_remove_pkcs7,
.process_data = msi_process_data,
.pkcs7_signature_new = msi_pkcs7_signature_new,
.append_pkcs7 = msi_append_pkcs7,
.bio_free = msi_bio_free,
.ctx_cleanup = msi_ctx_cleanup
};
/* Prototypes */
static MSI_CTX *msi_ctx_get(char *indata, uint32_t filesize);
static PKCS7 *msi_pkcs7_get_digital_signature(FILE_FORMAT_CTX *ctx, MSI_ENTRY *ds);
static int recurse_entry(MSI_FILE *msi, uint32_t entryID, MSI_DIRENT *parent);
static int msi_file_write(MSI_FILE *msi, MSI_DIRENT *dirent, u_char *p_msi, uint32_t len_msi,
u_char *p_msiex, uint32_t len_msiex, BIO *outdata);
static MSI_ENTRY *msi_signatures_get(MSI_DIRENT *dirent, MSI_ENTRY **dse);
static int msi_file_read(MSI_FILE *msi, MSI_ENTRY *entry, uint32_t offset, char *buffer, uint32_t len);
static int msi_dirent_delete(MSI_DIRENT *dirent, const u_char *name, uint16_t nameLen);
static BIO *msi_digest_calc_bio(FILE_FORMAT_CTX *ctx, BIO *hash);
static int msi_calc_MsiDigitalSignatureEx(FILE_FORMAT_CTX *ctx, BIO *hash);
static int msi_check_MsiDigitalSignatureEx(FILE_FORMAT_CTX *ctx, MSI_ENTRY *dse, PKCS7 *p7);
static int msi_hash_dir(MSI_FILE *msi, MSI_DIRENT *dirent, BIO *hash, int is_root);
static MSI_ENTRY *msi_root_entry_get(MSI_FILE *msi);
static void msi_file_free(MSI_FILE *msi);
static MSI_FILE *msi_file_new(char *buffer, uint32_t len);
static int msi_dirent_new(MSI_FILE *msi, MSI_ENTRY *entry, MSI_DIRENT *parent, MSI_DIRENT **ret);
static void msi_dirent_free(MSI_DIRENT *dirent);
static int msi_prehash_dir(MSI_DIRENT *dirent, BIO *hash, int is_root);
/*
* FILE_FORMAT method definitions
*/
/*
* Allocate and return a MSI file format context.
* [in, out] options: structure holds the input data
* [out] hash: message digest BIO
* [in] outdata: outdata file BIO (unused)
* [returns] pointer to MSI file format context
*/
static FILE_FORMAT_CTX *msi_ctx_new(GLOBAL_OPTIONS *options, BIO *hash, BIO *outdata)
{
FILE_FORMAT_CTX *ctx;
MSI_CTX *msi_ctx;
uint32_t filesize;
/* squash the unused parameter warning */
(void)outdata;
filesize = get_file_size(options->infile);
if (filesize == 0)
return NULL; /* FAILED */
options->indata = map_file(options->infile, filesize);
if (!options->indata) {
return NULL; /* FAILED */
}
if (memcmp(options->indata, msi_magic, sizeof msi_magic)) {
unmap_file(options->indata, filesize);
return NULL; /* FAILED */
}
msi_ctx = msi_ctx_get(options->indata, filesize);
if (!msi_ctx) {
unmap_file(options->indata, filesize);
return NULL; /* FAILED */
}
ctx = OPENSSL_malloc(sizeof(FILE_FORMAT_CTX));
ctx->format = &file_format_msi;
ctx->options = options;
ctx->msi_ctx = msi_ctx;
if (hash)
BIO_push(hash, BIO_new(BIO_s_null()));
if (options->pagehash == 1)
printf("Warning: -ph option is only valid for PE files\n");
if (options->jp >= 0)
printf("Warning: -jp option is only valid for CAB files\n");
return ctx;
}
/*
* Allocate and return SpcSipInfo object.
* [out] p: SpcSipInfo data
* [out] plen: SpcSipInfo data length
* [in] ctx: structure holds input and output data (unused)
* [returns] pointer to ASN1_OBJECT structure corresponding to SPC_SIPINFO_OBJID
*/
static ASN1_OBJECT *msi_spc_sip_info_get(u_char **p, int *plen, FILE_FORMAT_CTX *ctx)
{
const u_char msistr[] = {
0xf1, 0x10, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00,
0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46
};
ASN1_OBJECT *dtype;
SpcSipInfo *si = SpcSipInfo_new();
/* squash the unused parameter warning */
(void)ctx;
ASN1_INTEGER_set(si->a, 1);
ASN1_INTEGER_set(si->b, 0);
ASN1_INTEGER_set(si->c, 0);
ASN1_INTEGER_set(si->d, 0);
ASN1_INTEGER_set(si->e, 0);
ASN1_INTEGER_set(si->f, 0);
ASN1_OCTET_STRING_set(si->string, msistr, sizeof msistr);
*plen = i2d_SpcSipInfo(si, NULL);
*p = OPENSSL_malloc((size_t)*plen);
i2d_SpcSipInfo(si, p);
*p -= *plen;
dtype = OBJ_txt2obj(SPC_SIPINFO_OBJID, 1);
SpcSipInfo_free(si);
return dtype; /* OK */
}
/*
* Allocate and return a data content to be signed.
* [in] ctx: structure holds input and output data
* [in] hash: message digest BIO
* [in] md: message digest algorithm
* [returns] data content
*/
static PKCS7 *msi_pkcs7_contents_get(FILE_FORMAT_CTX *ctx, BIO *hash, const EVP_MD *md)
{
ASN1_OCTET_STRING *content;
/* squash the unused parameter warning, use initialized message digest BIO */
(void)md;
if (ctx->options->add_msi_dse && !msi_calc_MsiDigitalSignatureEx(ctx, hash)) {
printf("Unable to calc MsiDigitalSignatureEx\n");
return NULL; /* FAILED */
}
if (!msi_hash_dir(ctx->msi_ctx->msi, ctx->msi_ctx->dirent, hash, 1)) {
printf("Unable to msi_handle_dir()\n");
return NULL; /* FAILED */
}
content = spc_indirect_data_content_get(hash, ctx);
return pkcs7_set_content(content);
}
/*
* [in] ctx: structure holds input and output data
* [returns] the size of the message digest when passed an EVP_MD structure (the size of the hash)
*/
static int msi_hash_length_get(FILE_FORMAT_CTX *ctx)
{
return EVP_MD_size(ctx->options->md);
}
/*
* Get DigitalSignature and MsiDigitalSignatureEx streams,
* check if the signature exists.
* [in, out] ctx: structure holds input and output data
* [in] detached: embedded/detached PKCS#7 signature switch (unused)
* [returns] 0 on error or 1 on successs
*/
static int msi_check_file(FILE_FORMAT_CTX *ctx, int detached)
{
char *indata = NULL;
uint32_t inlen;
MSI_ENTRY *ds, *dse = NULL;
/* squash the unused parameter warning */
(void)detached;
if (!ctx) {
printf("Init error\n\n");
return 0; /* FAILED */
}
if (detached) {
printf("Checking the specified catalog file\n\n");
return 1; /* OK */
}
ds = msi_signatures_get(ctx->msi_ctx->dirent, &dse);
if (!ds) {
printf("MSI file has no signature\n\n");
return 0; /* FAILED */
}
inlen = GET_UINT32_LE(ds->size);
if (inlen == 0 || inlen >= MAXREGSECT) {
printf("Corrupted DigitalSignature stream length 0x%08X\n", inlen);
return 0; /* FAILED */
}
indata = OPENSSL_malloc((size_t)inlen);
if (!msi_file_read(ctx->msi_ctx->msi, ds, 0, indata, inlen)) {
printf("DigitalSignature stream data error\n\n");
OPENSSL_free(indata);
return 0; /* FAILED */
}
if (!dse) {
printf("Warning: MsiDigitalSignatureEx stream doesn't exist\n");
} else {
ctx->msi_ctx->len_msiex = GET_UINT32_LE(dse->size);
if (ctx->msi_ctx->len_msiex == 0 || ctx->msi_ctx->len_msiex >= MAXREGSECT) {
printf("Corrupted MsiDigitalSignatureEx stream length 0x%08X\n",
ctx->msi_ctx->len_msiex);
OPENSSL_free(indata);
return 0; /* FAILED */
}
ctx->msi_ctx->p_msiex = OPENSSL_malloc((size_t)ctx->msi_ctx->len_msiex);
if (!msi_file_read(ctx->msi_ctx->msi, dse, 0, (char *)ctx->msi_ctx->p_msiex,
ctx->msi_ctx->len_msiex)) {
printf("MsiDigitalSignatureEx stream data error\n\n");
OPENSSL_free(indata);
return 0; /* FAILED */
}
}
OPENSSL_free(indata);
return 1; /* OK */
}
/*
* Compute a simple sha1/sha256 message digest of the MSI file
* for use with a catalog file.
* [in] ctx: structure holds input and output data
* [in] md: message digest algorithm
* [returns] pointer to calculated message digest
*/
static u_char *msi_digest_calc(FILE_FORMAT_CTX *ctx, const EVP_MD *md)
{
u_char *mdbuf = NULL;
BIO *bhash = BIO_new(BIO_f_md());
if (!BIO_set_md(bhash, md)) {
printf("Unable to set the message digest of BIO\n");
BIO_free_all(bhash);
return NULL; /* FAILED */
}
BIO_push(bhash, BIO_new(BIO_s_null()));
if (!bio_hash_data(bhash, ctx->options->indata, 0, ctx->msi_ctx->fileend)) {
printf("Unable to calculate digest\n");
BIO_free_all(bhash);
return NULL; /* FAILED */
}
mdbuf = OPENSSL_malloc((size_t)EVP_MD_size(md));
BIO_gets(bhash, (char *)mdbuf, EVP_MD_size(md));
BIO_free_all(bhash);
return mdbuf; /* OK */
}
/*
* Calculate DigitalSignature and MsiDigitalSignatureEx and compare to values
* retrieved from PKCS#7 signedData.
* [in] ctx: structure holds input and output data
* [in] p7: PKCS#7 signature
* [returns] 0 on error or 1 on success
*/
static int msi_verify_digests(FILE_FORMAT_CTX *ctx, PKCS7 *p7)
{
int mdok, mdlen, mdtype = -1;
u_char mdbuf[EVP_MAX_MD_SIZE];
u_char cmdbuf[EVP_MAX_MD_SIZE];
u_char cexmdbuf[EVP_MAX_MD_SIZE];
u_char *cdigest = NULL;
const EVP_MD *md;
BIO *hash;
if (is_content_type(p7, SPC_INDIRECT_DATA_OBJID)) {
ASN1_STRING *content_val = p7->d.sign->contents->d.other->value.sequence;
const u_char *p = content_val->data;
SpcIndirectDataContent *idc = d2i_SpcIndirectDataContent(NULL, &p, content_val->length);
if (idc) {
if (idc->messageDigest && idc->messageDigest->digest && idc->messageDigest->digestAlgorithm) {
mdtype = OBJ_obj2nid(idc->messageDigest->digestAlgorithm->algorithm);
memcpy(mdbuf, idc->messageDigest->digest->data, (size_t)idc->messageDigest->digest->length);
}
SpcIndirectDataContent_free(idc);
}
}
if (mdtype == -1) {
printf("Failed to extract current message digest\n\n");
return 0; /* FAILED */
}
printf("Message digest algorithm : %s\n", OBJ_nid2sn(mdtype));
md = EVP_get_digestbynid(mdtype);
hash = BIO_new(BIO_f_md());
if (!BIO_set_md(hash, md)) {
printf("Unable to set the message digest of BIO\n");
BIO_free_all(hash);
return 0; /* FAILED */
}
BIO_push(hash, BIO_new(BIO_s_null()));
if (ctx->msi_ctx->p_msiex) {
BIO *prehash = BIO_new(BIO_f_md());
if (EVP_MD_size(md) != (int)ctx->msi_ctx->len_msiex) {
printf("Incorrect MsiDigitalSignatureEx stream data length\n\n");
BIO_free_all(hash);
BIO_free_all(prehash);
return 0; /* FAILED */
}
if (!BIO_set_md(prehash, md)) {
printf("Unable to set the message digest of BIO\n");
BIO_free_all(hash);
BIO_free_all(prehash);
return 0; /* FAILED */
}
BIO_push(prehash, BIO_new(BIO_s_null()));
print_hash("Current MsiDigitalSignatureEx ", "", (u_char *)ctx->msi_ctx->p_msiex,
(int)ctx->msi_ctx->len_msiex);
if (!msi_prehash_dir(ctx->msi_ctx->dirent, prehash, 1)) {
printf("Failed to calculate pre-hash used for MsiDigitalSignatureEx\n\n");
BIO_free_all(hash);
BIO_free_all(prehash);
return 0; /* FAILED */
}
BIO_gets(prehash, (char*)cexmdbuf, EVP_MAX_MD_SIZE);
BIO_free_all(prehash);
BIO_write(hash, (char*)cexmdbuf, EVP_MD_size(md));
print_hash("Calculated MsiDigitalSignatureEx ", "", cexmdbuf, EVP_MD_size(md));
}
if (!msi_hash_dir(ctx->msi_ctx->msi, ctx->msi_ctx->dirent, hash, 1)) {
printf("Failed to calculate DigitalSignature\n\n");
BIO_free_all(hash);
return 0; /* FAILED */
}
print_hash("Current DigitalSignature ", "", mdbuf, EVP_MD_size(md));
BIO_gets(hash, (char*)cmdbuf, EVP_MAX_MD_SIZE);
BIO_free_all(hash);
mdok = !memcmp(mdbuf, cmdbuf, (size_t)EVP_MD_size(md));
print_hash("Calculated DigitalSignature ", mdok ? "" : " MISMATCH!!!\n",
cmdbuf, EVP_MD_size(md));
if (!mdok) {
printf("Signature verification: failed\n\n");
return 0; /* FAILED */
}
cdigest = msi_digest_calc(ctx, md);
if (!cdigest) {
printf("Failed to calculate simple message digest\n\n");
return 0; /* FAILED */
}
mdlen = EVP_MD_size(EVP_get_digestbynid(mdtype));
print_hash("Calculated message digest ", "\n", cdigest, mdlen);
OPENSSL_free(cdigest);
return 1; /* OK */
}
/*
* Extract existing signature in DER format.
* [in] ctx: structure holds input and output data
* [returns] pointer to PKCS#7 structure
*/
static PKCS7 *msi_pkcs7_extract(FILE_FORMAT_CTX *ctx)
{
PKCS7 *p7;
MSI_ENTRY *ds = msi_signatures_get(ctx->msi_ctx->dirent, NULL);
if (!ds) {
printf("MSI file has no signature\n");
return NULL; /* FAILED */
}
p7 = msi_pkcs7_get_digital_signature(ctx, ds);
if (!p7) {
printf("Unable to extract existing signature\n");
return NULL; /* FAILED */
}
return p7;
}
/*
* Extract existing signature in DER format.
* Perform a sanity check for the MsiDigitalSignatureEx section.
* [in] ctx: structure holds input and output data
* [returns] pointer to PKCS#7 structure
*/
static PKCS7 *msi_pkcs7_extract_to_nest(FILE_FORMAT_CTX *ctx)
{
PKCS7 *p7;
MSI_ENTRY *ds, *dse = NULL;
ds = msi_signatures_get(ctx->msi_ctx->dirent, &dse);
if (!ds) {
printf("MSI file has no signature\n");
return NULL; /* FAILED */
}
p7 = msi_pkcs7_get_digital_signature(ctx, ds);
if (!p7) {
printf("Unable to extract existing signature\n");
return NULL; /* FAILED */
}
/* perform a sanity check for the MsiDigitalSignatureEx section */
if (!msi_check_MsiDigitalSignatureEx(ctx, dse, p7)) {
PKCS7_free(p7);
return NULL; /* FAILED */
}
return p7;
}
/*
* Remove existing signature.
* [in, out] ctx: structure holds input and output data
* [out] hash: message digest BIO (unused)
* [out] outdata: outdata file BIO
* [returns] 1 on error or 0 on success
*/
static int msi_remove_pkcs7(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata)
{
/* squash the unused parameter warning */
(void)hash;
if (!msi_dirent_delete(ctx->msi_ctx->dirent, digital_signature_ex,
sizeof digital_signature_ex)) {
return 1; /* FAILED */
}
if (!msi_dirent_delete(ctx->msi_ctx->dirent, digital_signature,
sizeof digital_signature)) {
return 1; /* FAILED */
}
if (!msi_file_write(ctx->msi_ctx->msi, ctx->msi_ctx->dirent,
NULL, 0, NULL, 0, outdata)) {
printf("Saving the msi file failed\n");
return 1; /* FAILED */
}
return 0; /* OK */
}
/*
* Calculate a hash (message digest) of data.
* [in, out] ctx: structure holds input and output data
* [out] hash: message digest BIO
* [out] outdata: outdata file BIO (unused)
* [returns] 1 on error or 0 on success
*/
static int msi_process_data(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata)
{
/* squash the unused parameter warning */
(void)outdata;
hash = msi_digest_calc_bio(ctx, hash);
if (!hash) {
return 1; /* FAILED */
}
return 0; /* OK */
}
/*
* Create a new PKCS#7 signature.
* [in, out] ctx: structure holds input and output data
* [out] hash: message digest BIO
* [returns] pointer to PKCS#7 structure
*/
static PKCS7 *msi_pkcs7_signature_new(FILE_FORMAT_CTX *ctx, BIO *hash)
{
ASN1_OCTET_STRING *content;
PKCS7 *p7 = pkcs7_create(ctx);
if (!p7) {
printf("Creating a new signature failed\n");
return NULL; /* FAILED */
}
if (!add_indirect_data_object(p7)) {
printf("Adding SPC_INDIRECT_DATA_OBJID failed\n");
PKCS7_free(p7);
return NULL; /* FAILED */
}
content = spc_indirect_data_content_get(hash, ctx);
if (!content) {
printf("Failed to get spcIndirectDataContent\n");
return NULL; /* FAILED */
}
if (!sign_spc_indirect_data_content(p7, content)) {
printf("Failed to set signed content\n");
PKCS7_free(p7);
ASN1_OCTET_STRING_free(content);
return NULL; /* FAILED */
}
ASN1_OCTET_STRING_free(content);
return p7;
}
/*
* Append signature to the outfile.
* [in, out] ctx: structure holds input and output data
* [out] outdata: outdata file BIO
* [in] p7: PKCS#7 signature
* [returns] 1 on error or 0 on success
*/
static int msi_append_pkcs7(FILE_FORMAT_CTX *ctx, BIO *outdata, PKCS7 *p7)
{
u_char *p = NULL;
int len; /* signature length */
if (((len = i2d_PKCS7(p7, NULL)) <= 0)
|| (p = OPENSSL_malloc((size_t)len)) == NULL) {
printf("i2d_PKCS memory allocation failed: %d\n", len);
return 1; /* FAILED */
}
i2d_PKCS7(p7, &p);
p -= len;
if (!msi_file_write(ctx->msi_ctx->msi, ctx->msi_ctx->dirent, p, (uint32_t)len,
ctx->msi_ctx->p_msiex, ctx->msi_ctx->len_msiex, outdata)) {
printf("Saving the msi file failed\n");
OPENSSL_free(p);
return 1; /* FAILED */
}
OPENSSL_free(p);
return 0; /* OK */
}
/*
* Free up an entire outdata BIO chain.
* [out] hash: message digest BIO
* [out] outdata: outdata file BIO
* [returns] none
*/
static BIO *msi_bio_free(BIO *hash, BIO *outdata)
{
BIO_free_all(hash);
BIO_free_all(outdata);
return NULL;
}
/*
* Deallocate a FILE_FORMAT_CTX structure and MSI format specific structures,
* unmap indata file.
* [in, out] ctx: structure holds input and output data
* [out] hash: message digest BIO
* [out] outdata: outdata file BIO
* [returns] none
*/
static void msi_ctx_cleanup(FILE_FORMAT_CTX *ctx, BIO *hash, BIO *outdata)
{
if (outdata) {
BIO_free_all(hash);
BIO_free_all(outdata);
}
unmap_file(ctx->options->indata, ctx->msi_ctx->fileend);
msi_file_free(ctx->msi_ctx->msi);
msi_dirent_free(ctx->msi_ctx->dirent);
OPENSSL_free(ctx->msi_ctx->p_msiex);
OPENSSL_free(ctx->msi_ctx);
OPENSSL_free(ctx);
}
/*
* MSI helper functions
*/
/*
* Verify mapped MSI file and create MSI format specific structure.
* [in] indata: mapped MSI file
* [in] filesize: size of MSI file
* [returns] pointer to MSI format specific structure
*/
static MSI_CTX *msi_ctx_get(char *indata, uint32_t filesize)
{
MSI_ENTRY *root;
MSI_FILE *msi;
MSI_DIRENT *dirent;
MSI_CTX *msi_ctx;
msi = msi_file_new(indata, filesize);
if (!msi) {
printf("Failed to parse MSI_FILE struct\n");
return NULL; /* FAILED */
}
root = msi_root_entry_get(msi);
if (!root) {
printf("Failed to get file entry\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
if (!msi_dirent_new(msi, root, NULL, &(dirent))) {
printf("Failed to parse MSI_DIRENT struct\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
msi_ctx = OPENSSL_zalloc(sizeof(MSI_CTX));
msi_ctx->msi = msi;
msi_ctx->dirent = dirent;
msi_ctx->fileend = filesize;
return msi_ctx; /* OK */
}
static PKCS7 *msi_pkcs7_get_digital_signature(FILE_FORMAT_CTX *ctx, MSI_ENTRY *ds)
{
PKCS7 *p7 = NULL;
const u_char *blob;
char *p;
uint32_t len = GET_UINT32_LE(ds->size);
if (len == 0 || len >= MAXREGSECT) {
printf("Corrupted DigitalSignature stream length 0x%08X\n", len);
return NULL; /* FAILED */
}
p = OPENSSL_malloc((size_t)len);
if (!msi_file_read(ctx->msi_ctx->msi, ds, 0, p, len)) {
printf("DigitalSignature stream data error\n");
return NULL;
}
blob = (u_char *)p;
p7 = d2i_PKCS7(NULL, &blob, len);
OPENSSL_free(p);
if (!p7) {
printf("Failed to extract PKCS7 data\n");
return NULL;
}
return p7;
}
/* Get absolute address from sector and offset */
static const u_char *sector_offset_to_address(MSI_FILE *msi, uint32_t sector, uint32_t offset)
{
if (sector >= MAXREGSECT || offset >= msi->m_sectorSize
|| (msi->m_bufferLen - offset) / msi->m_sectorSize <= sector) {
printf("Corrupted file\n");
return NULL; /* FAILED */
}
return msi->m_buffer + (sector + 1) * msi->m_sectorSize + offset;
}
static uint32_t get_fat_sector_location(MSI_FILE *msi, uint32_t fatSectorNumber)
{
uint32_t entriesPerSector, difatSectorLocation, fatSectorLocation;
const u_char *address;
if (fatSectorNumber < DIFAT_IN_HEADER) {
return LE_UINT32(msi->m_hdr->headerDIFAT[fatSectorNumber]);
} else {
fatSectorNumber -= DIFAT_IN_HEADER;
entriesPerSector = msi->m_sectorSize / 4 - 1;
difatSectorLocation = msi->m_hdr->firstDIFATSectorLocation;
while (fatSectorNumber >= entriesPerSector) {
fatSectorNumber -= entriesPerSector;
address = sector_offset_to_address(msi, difatSectorLocation, msi->m_sectorSize - 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
difatSectorLocation = GET_UINT32_LE(address);
}
address = sector_offset_to_address(msi, difatSectorLocation, fatSectorNumber * 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
fatSectorLocation = GET_UINT32_LE(address);
if (fatSectorLocation == 0 || fatSectorLocation >= FREESECT) {
printf("Get corrupted sector location 0x%08X\n", fatSectorLocation);
return NOSTREAM; /* FAILED */
}
return fatSectorLocation;
}
}
/* Lookup FAT */
static uint32_t get_next_sector(MSI_FILE *msi, uint32_t sector)
{
const u_char *address;
uint32_t nextSectorLocation;
uint32_t entriesPerSector = msi->m_sectorSize / 4;
uint32_t fatSectorNumber = sector / entriesPerSector;
uint32_t fatSectorLocation = get_fat_sector_location(msi, fatSectorNumber);
if (fatSectorLocation == NOSTREAM) {
printf("Failed to get a fat sector location\n");
return NOSTREAM; /* FAILED */
}
address = sector_offset_to_address(msi, fatSectorLocation, sector % entriesPerSector * 4);
if (!address) {
printf("Failed to get a next sector address\n");
return NOSTREAM; /* FAILED */
}
nextSectorLocation = GET_UINT32_LE(address);
if (nextSectorLocation == 0 || nextSectorLocation >= FREESECT) {
printf("Get corrupted sector location 0x%08X\n", nextSectorLocation);
return NOSTREAM; /* FAILED */
}
return nextSectorLocation;
}
/* Locate the final sector/offset when original offset expands multiple sectors */
static int locate_final_sector(MSI_FILE *msi, uint32_t sector, uint32_t offset, uint32_t *finalSector, uint32_t *finalOffset)
{
while (offset >= msi->m_sectorSize) {
offset -= msi->m_sectorSize;
sector = get_next_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next sector\n");
return 0; /* FAILED */
}
}
*finalSector = sector;
*finalOffset = offset;
return 1; /* OK */
}
/* Get absolute address from mini sector and offset */
static const u_char *mini_sector_offset_to_address(MSI_FILE *msi, uint32_t sector, uint32_t offset)
{
if (sector >= MAXREGSECT || offset >= msi->m_minisectorSize ||
(msi->m_bufferLen - offset) / msi->m_minisectorSize <= sector) {
printf("Corrupted file\n");
return NULL; /* FAILED */
}
if (!locate_final_sector(msi, msi->m_miniStreamStartSector, sector * msi->m_minisectorSize + offset, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NULL; /* FAILED */
}
return sector_offset_to_address(msi, sector, offset);
}
/*
* Copy as many as possible in each step
* copylen typically iterate as: msi->m_sectorSize - offset --> msi->m_sectorSize --> msi->m_sectorSize --> ... --> remaining
*/
static int read_stream(MSI_FILE *msi, uint32_t sector, uint32_t offset, char *buffer, uint32_t len)
{
if (!locate_final_sector(msi, sector, offset, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return 0; /* FAILED */
}
while (len > 0) {
const u_char *address;
uint32_t copylen;
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next sector address\n");
return 0; /* FAILED */
}
copylen = MIN(len, msi->m_sectorSize - offset);
if (msi->m_buffer + msi->m_bufferLen < address + copylen) {
printf("Corrupted file\n");
return 0; /* FAILED */
}
memcpy(buffer, address, copylen);
buffer += copylen;
len -= copylen;
sector = get_next_sector(msi, sector);
if (sector == 0) {
printf("Failed to get a next sector\n");
return 0; /* FAILED */
}
offset = 0;
}
return 1; /* OK */
}
/* Lookup miniFAT */
static uint32_t get_next_mini_sector(MSI_FILE *msi, uint32_t miniSector)
{
uint32_t sector, offset, nextMiniSectorLocation;
const u_char *address;
if (!locate_final_sector(msi, msi->m_hdr->firstMiniFATSectorLocation, miniSector * 4, &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NOSTREAM; /* FAILED */
}
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next mini sector address\n");
return NOSTREAM; /* FAILED */
}
nextMiniSectorLocation = GET_UINT32_LE(address);
if (nextMiniSectorLocation == 0 || nextMiniSectorLocation >= FREESECT) {
printf("Get corrupted sector location 0x%08X\n", nextMiniSectorLocation);
return NOSTREAM; /* FAILED */
}
return nextMiniSectorLocation;
}
static int locate_final_mini_sector(MSI_FILE *msi, uint32_t sector, uint32_t offset, uint32_t *finalSector, uint32_t *finalOffset)
{
while (offset >= msi->m_minisectorSize) {
offset -= msi->m_minisectorSize;
sector = get_next_mini_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next mini sector\n");
return 0; /* FAILED */
}
}
*finalSector = sector;
*finalOffset = offset;
return 1; /* OK */
}
/* Same logic as "read_stream" except that use mini stream functions instead */
static int read_mini_stream(MSI_FILE *msi, uint32_t sector, uint32_t offset, char *buffer, uint32_t len)
{
if (!locate_final_mini_sector(msi, sector, offset, &sector, &offset)) {
printf("Failed to locate a final mini sector\n");
return 0; /* FAILED */
}
while (len > 0) {
const u_char *address;
uint32_t copylen;
address = mini_sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a next mini sector address\n");
return 0; /* FAILED */
}
copylen = MIN(len, msi->m_minisectorSize - offset);
if (msi->m_buffer + msi->m_bufferLen < address + copylen) {
printf("Corrupted file\n");
return 0; /* FAILED */
}
memcpy(buffer, address, copylen);
buffer += copylen;
len -= copylen;
sector = get_next_mini_sector(msi, sector);
if (sector == NOSTREAM) {
printf("Failed to get a next mini sector\n");
return 0; /* FAILED */
}
offset = 0;
}
return 1; /* OK */
}
/*
* Get file (stream) data start with "offset".
* The buffer must have enough space to store "len" bytes. Typically "len" is derived by the steam length.
*/
static int msi_file_read(MSI_FILE *msi, MSI_ENTRY *entry, uint32_t offset, char *buffer, uint32_t len)
{
if (len < msi->m_hdr->miniStreamCutoffSize) {
if (!read_mini_stream(msi, entry->startSectorLocation, offset, buffer, len))
return 0; /* FAILED */
} else {
if (!read_stream(msi, entry->startSectorLocation, offset, buffer, len))
return 0; /* FAILED */
}
return 1; /* OK */
}
/* Parse MSI_FILE_HDR struct */
static MSI_FILE_HDR *parse_header(char *data)
{
MSI_FILE_HDR *header = (MSI_FILE_HDR *)OPENSSL_malloc(HEADER_SIZE);
/* initialise 512 bytes */
memset(header, 0, sizeof(MSI_FILE_HDR));
memcpy(header->signature, data + HEADER_SIGNATURE, sizeof header->signature);
/* Minor Version field SHOULD be set to 0x003E. */
header->minorVersion = GET_UINT16_LE(data + HEADER_MINOR_VER);
if (header->minorVersion !=0x003E ) {
printf("Warning: Minor Version field SHOULD be 0x003E, but is: 0x%04X\n", header->minorVersion);
}
/* Major Version field MUST be set to either 0x0003 (version 3) or 0x0004 (version 4). */
header->majorVersion = GET_UINT16_LE(data + HEADER_MAJOR_VER);
if (header->majorVersion != 0x0003 && header->majorVersion != 0x0004) {
printf("Unknown Major Version: 0x%04X\n", header->majorVersion);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Byte Order field MUST be set to 0xFFFE, specifies little-endian byte order. */
header->byteOrder = GET_UINT16_LE(data + HEADER_BYTE_ORDER);
if (header->byteOrder != 0xFFFE) {
printf("Unknown Byte Order: 0x%04X\n", header->byteOrder);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Sector Shift field MUST be set to 0x0009, or 0x000c, depending on the Major Version field.
* This field specifies the sector size of the compound file as a power of 2. */
header->sectorShift = GET_UINT16_LE(data + HEADER_SECTOR_SHIFT);
if ((header->majorVersion == 0x0003 && header->sectorShift != 0x0009) ||
(header->majorVersion == 0x0004 && header->sectorShift != 0x000C)) {
printf("Unknown Sector Shift: 0x%04X\n", header->sectorShift);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Mini Sector Shift field MUST be set to 0x0006.
* This field specifies the sector size of the Mini Stream as a power of 2.
* The sector size of the Mini Stream MUST be 64 bytes. */
header->miniSectorShift = GET_UINT16_LE(data + HEADER_MINI_SECTOR_SHIFT);
if (header->miniSectorShift != 0x0006) {
printf("Unknown Mini Sector Shift: 0x%04X\n", header->miniSectorShift);
OPENSSL_free(header);
return NULL; /* FAILED */
}
/* Number of Directory Sectors field contains the count of the number
* of directory sectors in the compound file.
* If Major Version is 3, the Number of Directory Sectors MUST be zero. */
header->numDirectorySector = GET_UINT32_LE(data + HEADER_DIR_SECTORS_NUM);
if (header->majorVersion == 0x0003 && header->numDirectorySector != 0x00000000) {
printf("Unsupported Number of Directory Sectors: 0x%08X\n", header->numDirectorySector);
OPENSSL_free(header);
return NULL; /* FAILED */
}
header->numFATSector = GET_UINT32_LE(data + HEADER_FAT_SECTORS_NUM);
header->firstDirectorySectorLocation = GET_UINT32_LE(data + HEADER_DIR_SECTOR_LOC);
header->transactionSignatureNumber = GET_UINT32_LE(data + HEADER_TRANSACTION);
/* Mini Stream Cutoff Size field MUST be set to 0x00001000.
* This field specifies the maximum size of a user-defined data stream that is allocated
* from the mini FAT and mini stream, and that cutoff is 4,096 bytes.
* Any user-defined data stream that is greater than or equal to this cutoff size
* must be allocated as normal sectors from the FAT. */
header->miniStreamCutoffSize = GET_UINT32_LE(data + HEADER_MINI_STREAM_CUTOFF);
if (header->miniStreamCutoffSize != 0x00001000) {
printf("Unsupported Mini Stream Cutoff Size: 0x%08X\n", header->miniStreamCutoffSize);
OPENSSL_free(header);
return NULL; /* FAILED */
}
header->firstMiniFATSectorLocation = GET_UINT32_LE(data + HEADER_MINI_FAT_SECTOR_LOC);
header->numMiniFATSector = GET_UINT32_LE(data + HEADER_MINI_FAT_SECTORS_NUM);
header->firstDIFATSectorLocation = GET_UINT32_LE(data + HEADER_DIFAT_SECTOR_LOC);
header->numDIFATSector = GET_UINT32_LE(data + HEADER_DIFAT_SECTORS_NUM);
memcpy(header->headerDIFAT, data + HEADER_DIFAT, sizeof header->headerDIFAT);
return header;
}
/* Parse MSI_ENTRY struct */
static MSI_ENTRY *parse_entry(MSI_FILE *msi, const u_char *data, int is_root)
{
uint32_t inlen;
MSI_ENTRY *entry = (MSI_ENTRY *)OPENSSL_malloc(sizeof(MSI_ENTRY));
/* initialise 128 bytes */
memset(entry, 0, sizeof(MSI_ENTRY));
entry->nameLen = GET_UINT16_LE(data + DIRENT_NAME_LEN);
/* This length MUST NOT exceed 64, the maximum size of the Directory Entry Name field */
if (entry->nameLen == 0 || entry->nameLen > 64) {
printf("Corrupted Directory Entry Name Length\n");
OPENSSL_free(entry);
return NULL; /* FAILED */
}
memcpy(entry->name, data + DIRENT_NAME, entry->nameLen);
/* The root directory entry's Name field MUST contain the null-terminated
* string "Root Entry" in Unicode UTF-16. */
if (is_root && (entry->nameLen != sizeof msi_root_entry
|| memcmp(entry->name, msi_root_entry, entry->nameLen))) {
printf("Corrupted Root Directory Entry's Name\n");
OPENSSL_free(entry);
return NULL; /* FAILED */
}
entry->type = GET_UINT8_LE(data + DIRENT_TYPE);
entry->colorFlag = GET_UINT8_LE(data + DIRENT_COLOUR);
entry->leftSiblingID = GET_UINT32_LE(data + DIRENT_LEFT_SIBLING_ID);
entry->rightSiblingID = GET_UINT32_LE(data + DIRENT_RIGHT_SIBLING_ID);
entry->childID = GET_UINT32_LE(data + DIRENT_CHILD_ID);
memcpy(entry->clsid, data + DIRENT_CLSID, 16);
memcpy(entry->stateBits, data + DIRENT_STATE_BITS, 4);
memcpy(entry->creationTime, data + DIRENT_CREATE_TIME, 8);
/* The Creation Time field in the root storage directory entry MUST be all zeroes
but the Modified Time field in the root storage directory entry MAY be all zeroes */
if (is_root && memcmp(entry->creationTime, msi_zeroes, 8)) {
printf("Corrupted Root Directory Entry's Creation Time\n");
OPENSSL_free(entry);
return NULL; /* FAILED */
}
memcpy(entry->modifiedTime, data + DIRENT_MODIFY_TIME, 8);
entry->startSectorLocation = GET_UINT32_LE(data + DIRENT_START_SECTOR_LOC);
memcpy(entry->size, data + DIRENT_FILE_SIZE, 8);
/* For a version 3 compound file 512-byte sector size, the value of this field
MUST be less than or equal to 0x80000000 */
inlen = GET_UINT32_LE(entry->size);
if ((msi->m_sectorSize == 0x0200 && inlen > 0x80000000)
|| (msi->m_bufferLen <= inlen)) {
printf("Corrupted Stream Size 0x%08X\n", inlen);
OPENSSL_free(entry);
return NULL; /* FAILED */
}
return entry;
}
/*
* Get entry (directory or file) by its ID.
* Pass "0" to get the root directory entry. -- This is the start point to navigate the compound file.
* Use the returned object to access child entries.
*/
static MSI_ENTRY *get_entry(MSI_FILE *msi, uint32_t entryID, int is_root)
{
uint32_t sector = 0;
uint32_t offset = 0;
const u_char *address;
/* Corrupted file */
if (!is_root && entryID == 0) {
printf("Corrupted entryID\n");
return NULL; /* FAILED */
}
if (msi->m_bufferLen / sizeof(MSI_ENTRY) <= entryID) {
printf("Invalid argument entryID\n");
return NULL; /* FAILED */
}
/* The first entry in the first sector of the directory chain is known as
the root directory entry so it can not contain the directory stream */
if (msi->m_hdr->firstDirectorySectorLocation == 0 && entryID == 0) {
printf("Corrupted First Directory Sector Location\n");
return NULL; /* FAILED */
}
if (!locate_final_sector(msi, msi->m_hdr->firstDirectorySectorLocation,
entryID * sizeof(MSI_ENTRY), &sector, &offset)) {
printf("Failed to locate a final sector\n");
return NULL; /* FAILED */
}
address = sector_offset_to_address(msi, sector, offset);
if (!address) {
printf("Failed to get a final address\n");
return NULL; /* FAILED */
}
return parse_entry(msi, address, is_root);
}
static MSI_ENTRY *msi_root_entry_get(MSI_FILE *msi)
{
return get_entry(msi, 0, TRUE);
}
static void msi_file_free(MSI_FILE *msi)
{
if (!msi)
return;
OPENSSL_free(msi->m_hdr);
OPENSSL_free(msi);
}
/* Parse MSI_FILE struct */
static MSI_FILE *msi_file_new(char *buffer, uint32_t len)
{
MSI_FILE *msi;
MSI_ENTRY *root;
MSI_FILE_HDR *header;
if (buffer == NULL || len == 0) {
printf("Invalid argument\n");
return NULL; /* FAILED */
}
header = parse_header(buffer);
if (!header) {
printf("Failed to parse MSI_FILE_HDR struct\n");
return NULL; /* FAILED */
}
msi = (MSI_FILE *)OPENSSL_malloc(sizeof(MSI_FILE));
msi->m_buffer = (const u_char *)(buffer);
msi->m_bufferLen = len;
msi->m_hdr = header;
msi->m_sectorSize = 1 << msi->m_hdr->sectorShift;
msi->m_minisectorSize = 1 << msi->m_hdr->miniSectorShift;
msi->m_miniStreamStartSector = 0;
if (msi->m_bufferLen < sizeof *(msi->m_hdr) ||
memcmp(msi->m_hdr->signature, msi_magic, sizeof msi_magic)) {
printf("Wrong file format\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
/* The file must contains at least 3 sectors */
if (msi->m_bufferLen < msi->m_sectorSize * 3) {
printf("The file must contains at least 3 sectors\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
root = msi_root_entry_get(msi);
if (!root) {
printf("Failed to get msi root entry\n");
msi_file_free(msi);
return NULL; /* FAILED */
}
msi->m_miniStreamStartSector = root->startSectorLocation;
OPENSSL_free(root);
return msi;
}
/* Recursively create a tree of MSI_DIRENT structures */
static int msi_dirent_new(MSI_FILE *msi, MSI_ENTRY *entry, MSI_DIRENT *parent, MSI_DIRENT **ret)
{
MSI_DIRENT *dirent;
static int cnt;
static MSI_DIRENT *tortoise, *hare;
if (!entry) {
return 1; /* OK */
}
if (entry->nameLen == 0 || entry->nameLen > 64) {
printf("Corrupted Directory Entry Name Length\n");
return 0; /* FAILED */
}
/* detect cycles in previously visited entries (parents, siblings) */
if (!ret) { /* initialized (non-root entry) */
if (!memcmp(entry, tortoise->entry, sizeof(MSI_ENTRY))) {
printf("MSI_ENTRY cycle detected at level %d\n", cnt);
OPENSSL_free(entry);
return 0; /* FAILED */
}
}
dirent = (MSI_DIRENT *)OPENSSL_malloc(sizeof(MSI_DIRENT));
memcpy(dirent->name, entry->name, entry->nameLen);
dirent->nameLen = entry->nameLen;
dirent->type = entry->type;
dirent->entry = entry;
dirent->children = sk_MSI_DIRENT_new_null();
dirent->next = NULL; /* fail-safe */
/* Floyd's cycle-finding algorithm */
if (!ret) { /* initialized (non-root entry) */
if (cnt++ & 1) /* move the tortoise every other invocation of msi_dirent_new() */
tortoise = tortoise->next;
hare->next = dirent; /* build a linked list of visited entries */
hare = dirent; /* move the hare every time */
} else { /* initialization needed (root entry) */
cnt = 0;
tortoise = dirent;
hare = dirent;
}
if (parent && !sk_MSI_DIRENT_push(parent->children, dirent)) {
printf("Failed to insert MSI_DIRENT\n");
return 0; /* FAILED */
}
if (ret)
*ret = dirent;
if (!recurse_entry(msi, entry->leftSiblingID, parent)
|| !recurse_entry(msi, entry->rightSiblingID, parent)
|| !recurse_entry(msi, entry->childID, dirent)) {
printf("Failed to add a sibling or a child to the tree\n");
return 0; /* FAILED */
}
return 1; /* OK */
}
/* Add a sibling or a child to the tree */
/* NOTE: These links are a tree, not a linked list */
static int recurse_entry(MSI_FILE *msi, uint32_t entryID, MSI_DIRENT *parent)
{
MSI_ENTRY *node;
/* The special NOSTREAM (0xFFFFFFFF) value is used as a terminator */
if (entryID == NOSTREAM) /* stop condition */
return 1; /* OK */
node = get_entry(msi, entryID, FALSE);
if (!node) {
printf("Corrupted ID: 0x%08X\n", entryID);
return 0; /* FAILED */
}
if (!msi_dirent_new(msi, node, parent, NULL)) {
return 0; /* FAILED */
}
return 1; /* OK */
}
/* Return DigitalSignature and MsiDigitalSignatureEx */
static MSI_ENTRY *msi_signatures_get(MSI_DIRENT *dirent, MSI_ENTRY **dse)
{
int i;
MSI_ENTRY *ds = NULL;
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))) {
ds = child->entry;
} else if (dse && !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex))) {
*dse = child->entry;
} else {
continue;
}
}
return ds;
}
/* Recursively free MSI_DIRENT struct */
static void msi_dirent_free(MSI_DIRENT *dirent)
{
if (!dirent)
return;
sk_MSI_DIRENT_pop_free(dirent->children, msi_dirent_free);
OPENSSL_free(dirent->entry);
OPENSSL_free(dirent);
}
/* Sorted list of MSI streams in this order is needed for hashing */
static int dirent_cmp_hash(const MSI_DIRENT *const *a, const MSI_DIRENT *const *b)
{
const MSI_DIRENT *dirent_a = *a;
const MSI_DIRENT *dirent_b = *b;
int diff = memcmp(dirent_a->name, dirent_b->name, MIN(dirent_a->nameLen, dirent_b->nameLen));
/* apparently the longer wins */
if (diff == 0) {
return dirent_a->nameLen > dirent_b->nameLen ? -1 : 1;
}
return diff;
}
/* Sorting relationship for directory entries, the left sibling MUST always be less than the right sibling */
static int dirent_cmp_tree(const MSI_DIRENT *const *a, const MSI_DIRENT *const *b)
{
const MSI_DIRENT *dirent_a = *a;
const MSI_DIRENT *dirent_b = *b;
uint16_t codepoint_a, codepoint_b;
int i;
if (dirent_a->nameLen != dirent_b->nameLen) {
return dirent_a->nameLen < dirent_b->nameLen ? -1 : 1;
}
for (i=0; i<dirent_a->nameLen-2; i=i+2) {
codepoint_a = GET_UINT16_LE(dirent_a->name + i);
codepoint_b = GET_UINT16_LE(dirent_b->name + i);
if (codepoint_a != codepoint_b) {
return codepoint_a < codepoint_b ? -1 : 1;
}
}
return 0;
}
/*
* Calculate the pre-hash used for 'MsiDigitalSignatureEx'
* signatures in MSI files. The pre-hash hashes only metadata (file names,
* file sizes, creation times and modification times), whereas the basic
* 'DigitalSignature' MSI signature only hashes file content.
*
* The hash is written to the hash BIO.
*/
/* Hash a MSI stream's extended metadata */
static void prehash_metadata(MSI_ENTRY *entry, BIO *hash)
{
if (entry->type != DIR_ROOT) {
BIO_write(hash, entry->name, entry->nameLen - 2);
}
if (entry->type != DIR_STREAM) {
BIO_write(hash, entry->clsid, sizeof entry->clsid);
} else {
BIO_write(hash, entry->size, (sizeof entry->size)/2);
}
BIO_write(hash, entry->stateBits, sizeof entry->stateBits);
if (entry->type != DIR_ROOT) {
BIO_write(hash, entry->creationTime, sizeof entry->creationTime);
BIO_write(hash, entry->modifiedTime, sizeof entry->modifiedTime);
}
}
/* Recursively hash a MSI directory's extended metadata */
static int msi_prehash_dir(MSI_DIRENT *dirent, BIO *hash, int is_root)
{
int i, ret = 0;
STACK_OF(MSI_DIRENT) *children;
if (!dirent || !dirent->children) {
return ret;
}
children = sk_MSI_DIRENT_dup(dirent->children);
prehash_metadata(dirent->entry, hash);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_hash);
sk_MSI_DIRENT_sort(children);
for (i = 0; i < sk_MSI_DIRENT_num(children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
if (is_root && (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))
|| !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex)))) {
continue;
}
if (child->type == DIR_STREAM) {
prehash_metadata(child->entry, hash);
}
if (child->type == DIR_STORAGE) {
if (!msi_prehash_dir(child, hash, 0)) {
goto out;
}
}
}
ret = 1; /* OK */
out:
sk_MSI_DIRENT_free(children);
return ret;
}
/* Recursively hash a MSI directory (storage) */
static int msi_hash_dir(MSI_FILE *msi, MSI_DIRENT *dirent, BIO *hash, int is_root)
{
int i, ret = 0;
STACK_OF(MSI_DIRENT) *children;
if (!dirent || !dirent->children) {
return ret;
}
children = sk_MSI_DIRENT_dup(dirent->children);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_hash);
sk_MSI_DIRENT_sort(children);
for (i = 0; i < sk_MSI_DIRENT_num(children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
if (is_root && (!memcmp(child->name, digital_signature, MIN(child->nameLen, sizeof digital_signature))
|| !memcmp(child->name, digital_signature_ex, MIN(child->nameLen, sizeof digital_signature_ex)))) {
/* Skip DigitalSignature and MsiDigitalSignatureEx streams */
continue;
}
if (child->type == DIR_STREAM) {
char *indata;
uint32_t inlen = GET_UINT32_LE(child->entry->size);
if (inlen == 0 || inlen >= MAXREGSECT) {
/* Skip null and corrupted streams */
continue;
}
indata = (char *)OPENSSL_malloc(inlen);
if (!msi_file_read(msi, child->entry, 0, indata, inlen)) {
printf("Failed to read stream data\n");
OPENSSL_free(indata);
goto out;
}
BIO_write(hash, indata, (int)inlen);
OPENSSL_free(indata);
}
if (child->type == DIR_STORAGE) {
if (!msi_hash_dir(msi, child, hash, 0)) {
printf("Failed to hash a MSI storage\n");
goto out;
}
}
}
BIO_write(hash, dirent->entry->clsid, sizeof dirent->entry->clsid);
ret = 1; /* OK */
out:
sk_MSI_DIRENT_free(children);
return ret;
}
static void ministream_append(MSI_OUT *out, char *buf, uint32_t len)
{
uint32_t needSectors = (len + out->sectorSize - 1) / out->sectorSize;
if (out->miniStreamLen + len >= (uint64_t)out->ministreamsMemallocCount * out->sectorSize) {
out->ministreamsMemallocCount += needSectors;
out->ministream = OPENSSL_realloc(out->ministream, (size_t)(out->ministreamsMemallocCount * out->sectorSize));
}
memcpy(out->ministream + out->miniStreamLen, buf, (size_t)len);
out->miniStreamLen += len;
}
static void minifat_append(MSI_OUT *out, char *buf, uint32_t len)
{
if (out->minifatLen == (uint64_t)out->minifatMemallocCount * out->sectorSize) {
out->minifatMemallocCount += 1;
out->minifat = OPENSSL_realloc(out->minifat, (size_t)(out->minifatMemallocCount * out->sectorSize));
}
memcpy(out->minifat + out->minifatLen, buf, (size_t)len);
out->minifatLen += len;
}
static void fat_append(MSI_OUT *out, char *buf, uint32_t len)
{
if (out->fatLen == (uint64_t)out->fatMemallocCount * out->sectorSize) {
out->fatMemallocCount += 1;
out->fat = OPENSSL_realloc(out->fat, (size_t)(out->fatMemallocCount * out->sectorSize));
}
memcpy(out->fat + out->fatLen, buf, (size_t)len);
out->fatLen += len;
}
static void difat_append(MSI_OUT *out, char *buf, uint32_t len)
{
if (out->difatLen == (uint64_t)out->difatMemallocCount * out->sectorSize) {
out->difatMemallocCount += 1;
out->difat = OPENSSL_realloc(out->difat, (size_t)(out->difatMemallocCount * out->sectorSize));
}
memcpy(out->difat + out->difatLen, buf, (size_t)len);
out->difatLen += len;
}
static int msi_dirent_delete(MSI_DIRENT *dirent, const u_char *name, uint16_t nameLen)
{
int i;
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (memcmp(child->name, name, MIN(child->nameLen, nameLen))) {
continue;
}
if (child->type != DIR_STREAM) {
printf("Can't delete or replace storages\n");
return 0; /* FAILED */
}
sk_MSI_DIRENT_delete(dirent->children, i);
msi_dirent_free(child);
}
return 1; /* OK */
}
static MSI_DIRENT *dirent_add(const u_char *name, uint16_t nameLen)
{
MSI_DIRENT *dirent = (MSI_DIRENT *)OPENSSL_malloc(sizeof(MSI_DIRENT));
MSI_ENTRY *entry = (MSI_ENTRY *)OPENSSL_malloc(sizeof(MSI_ENTRY));
memcpy(dirent->name, name, nameLen);
dirent->nameLen = nameLen;
dirent->type = DIR_STREAM;
dirent->children = sk_MSI_DIRENT_new_null();
memcpy(entry->name, name, nameLen);
entry->nameLen = nameLen;
entry->type = DIR_STREAM;
entry->colorFlag = BLACK_COLOR; /* make everything black */
entry->leftSiblingID = NOSTREAM;
entry->rightSiblingID = NOSTREAM;
entry->childID = NOSTREAM;
memset(entry->clsid, 0, 16);
memset(entry->stateBits, 0, 4);
memset(entry->creationTime, 0, 8);
memset(entry->modifiedTime, 0, 8);
entry->startSectorLocation = NOSTREAM;
memset(entry->size, 0, 8);
dirent->entry = entry;
return dirent;
}
static int dirent_insert(MSI_DIRENT *dirent, const u_char *name, uint16_t nameLen)
{
MSI_DIRENT *new_dirent;
if (!msi_dirent_delete(dirent, name, nameLen)) {
return 0; /* FAILED */
}
/* create new dirent */
new_dirent = dirent_add(name, nameLen);
sk_MSI_DIRENT_push(dirent->children, new_dirent);
return 1; /* OK */
}
static int signature_insert(MSI_DIRENT *dirent, uint32_t len_msiex)
{
if (len_msiex > 0) {
if (!dirent_insert(dirent, digital_signature_ex, sizeof digital_signature_ex)) {
return 0; /* FAILED */
}
} else {
if (!msi_dirent_delete(dirent, digital_signature_ex, sizeof digital_signature_ex)) {
return 0; /* FAILED */
}
}
if (!dirent_insert(dirent, digital_signature, sizeof digital_signature)) {
return 0; /* FAILED */
}
return 1; /* OK */
}
static uint32_t stream_read(MSI_FILE *msi, MSI_ENTRY *entry, u_char *p_msi, uint32_t len_msi,
u_char *p_msiex, uint32_t len_msiex, char **indata, uint32_t inlen, int is_root)
{
if (is_root && !memcmp(entry->name, digital_signature, sizeof digital_signature)) {
/* DigitalSignature */
inlen = len_msi;
*indata = OPENSSL_malloc((size_t)inlen);
memcpy(*indata, p_msi, (size_t)inlen);
} else if (is_root && !memcmp(entry->name, digital_signature_ex, sizeof digital_signature_ex)) {
/* MsiDigitalSignatureEx */
inlen = len_msiex;
*indata = OPENSSL_malloc((size_t)inlen);
memcpy(*indata, p_msiex, (size_t)inlen);
} else if (inlen != 0) {
*indata = (char *)OPENSSL_malloc(inlen);
if (!msi_file_read(msi, entry, 0, *indata, inlen)) {
return 0; /* FAILED */
}
}
return inlen;
}
/* Recursively handle data from MSI_DIRENT struct */
static int stream_handle(MSI_FILE *msi, MSI_DIRENT *dirent, u_char *p_msi, uint32_t len_msi,
u_char *p_msiex, uint32_t len_msiex, BIO *outdata, MSI_OUT *out, int is_root)
{
int i;
if (dirent->type == DIR_ROOT) {
if (len_msi > 0 && !signature_insert(dirent, len_msiex)) {
printf("Insert new signature failed\n");
return 0; /* FAILED */
}
out->ministreamsMemallocCount = (GET_UINT32_LE(dirent->entry->size) + out->sectorSize - 1)/out->sectorSize;
out->ministream = OPENSSL_malloc((uint64_t)out->ministreamsMemallocCount * out->sectorSize);
}
for (i = 0; i < sk_MSI_DIRENT_num(dirent->children); i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(dirent->children, i);
if (child->type == DIR_STORAGE) {
if (!stream_handle(msi, child, NULL, 0, NULL, 0, outdata, out, 0)) {
return 0; /* FAILED */
}
} else { /* DIR_STREAM */
char buf[MAX_SECTOR_SIZE];
char *indata = NULL;
uint32_t inlen = GET_UINT32_LE(child->entry->size);
if (inlen >= MAXREGSECT) {
printf("Corrupted stream length 0x%08X\n", inlen);
return 0; /* FAILED */
}
/* DigitalSignature or MsiDigitalSignatureEx: inlen == 0 */
inlen = stream_read(msi, child->entry, p_msi, len_msi, p_msiex, len_msiex, &indata, inlen, is_root);
if (inlen == 0) {
OPENSSL_free(indata);
continue; /* skip a null stream */
}
/* set the size of the user-defined data if this is a stream object */
PUT_UINT32_LE(inlen, buf);
memcpy(child->entry->size, buf, sizeof child->entry->size);
if (inlen < MINI_STREAM_CUTOFF_SIZE) {
/* set the index into the mini FAT to track the chain of sectors through the mini stream */
child->entry->startSectorLocation = out->miniSectorNum;
ministream_append(out, indata, inlen);
/* fill to the end with known data, such as all zeroes */
if (inlen % msi->m_minisectorSize > 0) {
uint32_t remain = msi->m_minisectorSize - inlen % msi->m_minisectorSize;
memset(buf, 0, (size_t)remain);
ministream_append(out, buf, remain);
}
while (inlen > msi->m_minisectorSize) {
out->miniSectorNum += 1;
PUT_UINT32_LE(out->miniSectorNum, buf);
minifat_append(out, buf, 4);
inlen -= msi->m_minisectorSize;
}
PUT_UINT32_LE(ENDOFCHAIN, buf);
minifat_append(out, buf, 4);
out->miniSectorNum += 1;
} else {
/* set the first sector location if this is a stream object */
child->entry->startSectorLocation = out->sectorNum;
/* stream save */
BIO_write(outdata, indata, (int)inlen);
/* fill to the end with known data, such as all zeroes */
if (inlen % out->sectorSize > 0) {
uint32_t remain = out->sectorSize - inlen % out->sectorSize;
memset(buf, 0, (size_t)remain);
BIO_write(outdata, buf, (int)remain);
}
/* set a sector chain in the FAT */
while (inlen > out->sectorSize) {
out->sectorNum += 1;
PUT_UINT32_LE(out->sectorNum, buf);
fat_append(out, buf, 4);
inlen -= out->sectorSize;
}
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += 1;
}
OPENSSL_free(indata);
}
}
return 1; /* OK */
}
static void ministream_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
uint32_t i, remain;
uint32_t ministreamSectorsCount = (out->miniStreamLen + out->sectorSize - 1) / out->sectorSize;
/* set the first sector of the mini stream in the entry root object */
dirent->entry->startSectorLocation = out->sectorNum;
/* ministream save */
BIO_write(outdata, out->ministream, (int)out->miniStreamLen);
OPENSSL_free(out->ministream);
/* fill to the end with known data, such as all zeroes */
if (out->miniStreamLen % out->sectorSize > 0) {
remain = out->sectorSize - out->miniStreamLen % out->sectorSize;
memset(buf, 0, (size_t)remain);
BIO_write(outdata, buf, (int)remain);
}
/* set a sector chain in the FAT */
for (i=1; i<ministreamSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the mini stream data */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += ministreamSectorsCount;
}
static void minifat_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
uint32_t i, remain;
/* set Mini FAT Starting Sector Location in the header */
if (out->minifatLen == 0) {
PUT_UINT32_LE(ENDOFCHAIN, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTOR_LOC, buf, 4);
return;
}
PUT_UINT32_LE(out->sectorNum, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTOR_LOC, buf, 4);
/* minifat save */
BIO_write(outdata, out->minifat, (int)out->minifatLen);
/* marks the end of the stream */
PUT_UINT32_LE(ENDOFCHAIN, buf);
BIO_write(outdata, buf, 4);
out->minifatLen += 4;
/* empty unallocated free sectors in the last Mini FAT sector */
if (out->minifatLen % out->sectorSize > 0) {
remain = out->sectorSize - out->minifatLen % out->sectorSize;
memset(buf, (int)FREESECT, (size_t)remain);
BIO_write(outdata, buf, (int)remain);
}
/* set a sector chain in the FAT */
out->minifatSectorsCount = (out->minifatLen + out->sectorSize - 1) / out->sectorSize;
for (i=1; i<out->minifatSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the mini FAT chain */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += out->minifatSectorsCount;
}
static char *msi_dirent_get(MSI_ENTRY *entry)
{
char buf[8];
char *data = OPENSSL_malloc(DIRENT_SIZE);
/* initialise 128 bytes */
memset(data, 0, DIRENT_SIZE);
memcpy(data + DIRENT_NAME, entry->name, entry->nameLen);
memset(data + DIRENT_NAME + entry->nameLen, 0, DIRENT_MAX_NAME_SIZE - entry->nameLen);
PUT_UINT16_LE(entry->nameLen, buf);
memcpy(data + DIRENT_NAME_LEN, buf, 2);
PUT_UINT8_LE(entry->type, buf);
memcpy(data + DIRENT_TYPE, buf, 1);
PUT_UINT8_LE(entry->colorFlag, buf);
memcpy(data + DIRENT_COLOUR, buf, 1);
PUT_UINT32_LE(entry->leftSiblingID, buf);
memcpy(data + DIRENT_LEFT_SIBLING_ID, buf, 4);
PUT_UINT32_LE(entry->rightSiblingID, buf);
memcpy(data + DIRENT_RIGHT_SIBLING_ID, buf, 4);
PUT_UINT32_LE(entry->childID, buf);
memcpy(data + DIRENT_CHILD_ID, buf, 4);
memcpy(data + DIRENT_CLSID, entry->clsid, 16);
memcpy(data + DIRENT_STATE_BITS, entry->stateBits, 4);
memcpy(data + DIRENT_CREATE_TIME, entry->creationTime, 8);
memcpy(data + DIRENT_MODIFY_TIME, entry->modifiedTime, 8);
PUT_UINT32_LE(entry->startSectorLocation, buf);
memcpy(data + DIRENT_START_SECTOR_LOC, buf, 4);
memcpy(data + DIRENT_FILE_SIZE, entry->size, 4);
memset(data + DIRENT_FILE_SIZE + 4, 0, 4);
return data;
}
static char *msi_unused_dirent_get(void)
{
char *data = OPENSSL_malloc(DIRENT_SIZE);
/* initialise 127 bytes */
memset(data, 0, DIRENT_SIZE);
memset(data + DIRENT_LEFT_SIBLING_ID, (int)NOSTREAM, 4);
memset(data + DIRENT_RIGHT_SIBLING_ID, (int)NOSTREAM, 4);
memset(data + DIRENT_CHILD_ID, (int)NOSTREAM, 4);
return data;
}
static int dirents_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out, uint32_t *streamId, int count, int last)
{
int i, childenNum;
char *entry;
STACK_OF(MSI_DIRENT) *children;
if (!dirent || !dirent->children) {
return count;
}
children = sk_MSI_DIRENT_dup(dirent->children);
sk_MSI_DIRENT_set_cmp_func(children, &dirent_cmp_tree);
sk_MSI_DIRENT_sort(children);
childenNum = sk_MSI_DIRENT_num(children);
/* make everything black */
dirent->entry->colorFlag = BLACK_COLOR;
dirent->entry->leftSiblingID = NOSTREAM;
if (dirent->type == DIR_STORAGE) {
if (last) {
dirent->entry->rightSiblingID = NOSTREAM;
} else {
/* make linked list rather than tree, only use next - right sibling */
count += childenNum;
dirent->entry->rightSiblingID = *streamId + (uint32_t)count + 1;
}
} else { /* DIR_ROOT */
dirent->entry->rightSiblingID = NOSTREAM;
}
dirent->entry->childID = *streamId + 1;
entry = msi_dirent_get(dirent->entry);
BIO_write(outdata, entry, DIRENT_SIZE);
OPENSSL_free(entry);
out->dirtreeLen += DIRENT_SIZE;
for (i = 0; i < childenNum; i++) {
MSI_DIRENT *child = sk_MSI_DIRENT_value(children, i);
int last_dir = i == childenNum - 1 ? 1 : 0;
*streamId += 1;
if (child->type == DIR_STORAGE) {
count += dirents_save(child, outdata, out, streamId, count, last_dir);
} else { /* DIR_STREAM */
count = 0;
child->entry->colorFlag = BLACK_COLOR;
child->entry->leftSiblingID = NOSTREAM;
if (last_dir) {
child->entry->rightSiblingID = NOSTREAM;
} else {
child->entry->rightSiblingID = *streamId + 1;
}
entry = msi_dirent_get(child->entry);
BIO_write(outdata, entry, DIRENT_SIZE);
OPENSSL_free(entry);
out->dirtreeLen += DIRENT_SIZE;
}
}
sk_MSI_DIRENT_free(children);
return count;
}
static void dirtree_save(MSI_DIRENT *dirent, BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
char *unused_entry;
uint32_t i, remain, streamId = 0;
/* set Directory Starting Sector Location in the header */
PUT_UINT32_LE(out->sectorNum, buf);
memcpy(out->header + HEADER_DIR_SECTOR_LOC, buf, 4);
/* set the size of the mini stream in the root object */
if (dirent->type == DIR_ROOT) {
PUT_UINT32_LE(out->miniStreamLen, buf);
memcpy(dirent->entry->size, buf, sizeof dirent->entry->size);
}
/* sort and save all directory entries */
dirents_save(dirent, outdata, out, &streamId, 0, 0);
/* set free (unused) directory entries */
unused_entry = msi_unused_dirent_get();
if (out->dirtreeLen % out->sectorSize > 0) {
remain = out->sectorSize - out->dirtreeLen % out->sectorSize;
while (remain > 0) {
BIO_write(outdata, unused_entry, DIRENT_SIZE);
remain -= DIRENT_SIZE;
}
}
OPENSSL_free(unused_entry);
/* set a sector chain in the FAT */
out->dirtreeSectorsCount = (out->dirtreeLen + out->sectorSize - 1) / out->sectorSize;
for (i=1; i<out->dirtreeSectorsCount; i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
fat_append(out, buf, 4);
}
/* mark the end of the directory chain */
PUT_UINT32_LE(ENDOFCHAIN, buf);
fat_append(out, buf, 4);
out->sectorNum += out->dirtreeSectorsCount;
}
static int fat_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
uint32_t i, j, remain, difatSectors, difatEntriesPerSector = 0, fatSectorIndex, lastFatSectorIndex;
remain = (out->fatLen + out->sectorSize - 1) / out->sectorSize;
out->fatSectorsCount = (out->fatLen + remain * 4 + out->sectorSize - 1) / out->sectorSize;
if (out->fatSectorsCount > DIFAT_IN_HEADER) {
difatEntriesPerSector = (out->sectorSize / 4) - 1;
difatSectors = (out->fatSectorsCount - DIFAT_IN_HEADER + difatEntriesPerSector - 1) / difatEntriesPerSector;
} else {
difatSectors = 0;
}
/* set 109 FAT sectors in HEADER_DIFAT table */
for (i = 0; i < MIN(out->fatSectorsCount, DIFAT_IN_HEADER); i++) {
PUT_UINT32_LE(out->sectorNum + i, buf);
memcpy(out->header + HEADER_DIFAT + i * 4, buf, 4);
}
out->sectorNum += out->fatSectorsCount;
if (out->fatSectorsCount > DIFAT_IN_HEADER) {
/* Set DIFAT start sector number in header */
PUT_UINT32_LE(out->sectorNum, buf);
memcpy(out->header + HEADER_DIFAT_SECTOR_LOC, buf, 4);
/* Set total DIFAT sectors number in header */
PUT_UINT32_LE(difatSectors, buf);
memcpy(out->header + HEADER_DIFAT_SECTORS_NUM, buf, 4);
remain = out->fatSectorsCount - DIFAT_IN_HEADER;
fatSectorIndex = out->sectorNum - remain;
lastFatSectorIndex = out->sectorNum;
/* Fill DIFAT sectors */
for (i = 0; i < difatSectors; i++) {
for (j = 0; j < difatEntriesPerSector; j++, fatSectorIndex++) {
if (fatSectorIndex < lastFatSectorIndex) {
PUT_UINT32_LE(fatSectorIndex, buf + j * 4);
} else {
PUT_UINT32_LE(FREESECT, buf + j * 4);
}
}
/* Add next DIFAT sector link or mark end of chain */
if (i + 1 >= difatSectors) {
PUT_UINT32_LE(ENDOFCHAIN, buf + out->sectorSize - 4);
} else {
PUT_UINT32_LE(out->sectorNum + 1, buf + out->sectorSize - 4);
}
difat_append(out, buf, out->sectorSize);
out->sectorNum++;
}
}
/* mark FAT sectors in the FAT chain */
PUT_UINT32_LE(FATSECT, buf);
for (i=0; i<out->fatSectorsCount; i++) {
fat_append(out, buf, 4);
}
/* mark DIFAT sectors in the FAT chain */
PUT_UINT32_LE(DIFSECT, buf);
for (i = 0; i < difatSectors; i++) {
fat_append(out, buf, 4);
}
/* empty unallocated free sectors in the last FAT sector */
if (out->fatLen % out->sectorSize > 0) {
remain = out->sectorSize - out->fatLen % out->sectorSize;
memset(buf, (int)FREESECT, (size_t)remain);
fat_append(out, buf, remain);
}
BIO_write(outdata, out->fat, (int)out->fatLen);
BIO_write(outdata, out->difat, (int)out->difatLen);
return 1; /* OK */
}
static void header_save(BIO *outdata, MSI_OUT *out)
{
char buf[MAX_SECTOR_SIZE];
uint32_t remain;
/* set Number of FAT sectors in the header */
PUT_UINT32_LE(out->fatSectorsCount, buf);
memcpy(out->header + HEADER_FAT_SECTORS_NUM, buf, 4);
/* set Number of Mini FAT sectors in the header */
PUT_UINT32_LE(out->minifatSectorsCount, buf);
memcpy(out->header + HEADER_MINI_FAT_SECTORS_NUM, buf, 4);
/* set Number of Directory Sectors in the header if Major Version is 4 */
if (out->sectorSize == 4096) {
PUT_UINT32_LE(out->dirtreeSectorsCount, buf);
memcpy(out->header + HEADER_DIR_SECTORS_NUM, buf, 4);
}
(void)BIO_seek(outdata, 0);
BIO_write(outdata, out->header, HEADER_SIZE);
remain = out->sectorSize - HEADER_SIZE;
memset(buf, 0, (size_t)remain);
BIO_write(outdata, buf, (int)remain);
}
static char *header_new(MSI_FILE_HDR *hdr, MSI_OUT *out)
{
int i;
char buf[4];
char *data = OPENSSL_malloc(HEADER_SIZE);
static u_char dead_food[] = {
0xde, 0xad, 0xf0, 0x0d
};
/* initialise 512 bytes */
memset(data, 0, HEADER_SIZE);
memcpy(data + HEADER_SIGNATURE, msi_magic, sizeof msi_magic);
memset(data + HEADER_CLSID, 0, 16);
PUT_UINT16_LE(hdr->minorVersion, buf);
memcpy(data + HEADER_MINOR_VER, buf, 2);
if (out->sectorSize == 4096) {
PUT_UINT16_LE(0x0004, buf);
} else {
PUT_UINT16_LE(0x0003, buf);
}
memcpy(data + HEADER_MAJOR_VER, buf, 2);
PUT_UINT16_LE(hdr->byteOrder, buf);
memcpy(data + HEADER_BYTE_ORDER, buf, 2);
PUT_UINT16_LE(hdr->sectorShift, buf);
if (out->sectorSize == 4096) {
PUT_UINT16_LE(0x000C, buf);
} else {
PUT_UINT16_LE(0x0009, buf);
}
memcpy(data + HEADER_SECTOR_SHIFT, buf, 2);
PUT_UINT16_LE(hdr->miniSectorShift, buf);
memcpy(data + HEADER_MINI_SECTOR_SHIFT, buf, 2);
memset(data + RESERVED, 0, 6);
memset(data + HEADER_DIR_SECTORS_NUM, 0, 4); /* not used for version 3 */
memcpy(data + HEADER_FAT_SECTORS_NUM, dead_food, 4);
memcpy(data + HEADER_DIR_SECTOR_LOC, dead_food, 4);
memset(data + HEADER_TRANSACTION, 0, 4); /* reserved */
PUT_UINT32_LE(MINI_STREAM_CUTOFF_SIZE, buf);
memcpy(data + HEADER_MINI_STREAM_CUTOFF, buf, 4);
memcpy(data + HEADER_MINI_FAT_SECTOR_LOC, dead_food, 4);
memcpy(data + HEADER_MINI_FAT_SECTORS_NUM, dead_food, 4);
PUT_UINT32_LE(ENDOFCHAIN, buf);
memcpy(data + HEADER_DIFAT_SECTOR_LOC, buf, 4);
memset(data + HEADER_DIFAT_SECTORS_NUM, 0, 4); /* no DIFAT */
memcpy(data + HEADER_DIFAT, dead_food, 4); /* sector number for FAT */
for (i = 1; i < DIFAT_IN_HEADER; i++) {
memset(data + HEADER_DIFAT + 4*i, (int)FREESECT, 4); /* free FAT sectors */
}
return data;
}
static int msiout_set(MSI_FILE *msi, uint32_t len_msi, uint32_t len_msiex, MSI_OUT *out)
{
uint32_t msi_size, msiex_size;
out->sectorSize = msi->m_sectorSize;
if (len_msi <= MINI_STREAM_CUTOFF_SIZE) {
msi_size = ((len_msi + msi->m_minisectorSize - 1) / msi->m_minisectorSize) * msi->m_minisectorSize;
} else {
msi_size = ((len_msi + msi->m_sectorSize - 1) / msi->m_sectorSize) * msi->m_sectorSize;
}
msiex_size = ((len_msiex + msi->m_minisectorSize - 1) / msi->m_minisectorSize) * msi->m_minisectorSize;
/*
* no DIFAT sectors will be needed in a file that is smaller than
* 6,813 MB (version 3 files), respectively 436,004 MB (version 4 files)
*/
if (msi->m_bufferLen + msi_size + msiex_size > 7143936) {
out->sectorSize = 4096;
}
out->header = header_new(msi->m_hdr, out);
out->minifatMemallocCount = msi->m_hdr->numMiniFATSector;
out->fatMemallocCount = msi->m_hdr->numFATSector;
out->ministream = NULL;
out->minifat = OPENSSL_malloc((uint64_t)out->minifatMemallocCount * out->sectorSize);
out->fat = OPENSSL_malloc((uint64_t)out->fatMemallocCount * out->sectorSize);
out->miniSectorNum = 0;
out->sectorNum = 0;
return 1; /* OK */
}
static int msi_file_write(MSI_FILE *msi, MSI_DIRENT *dirent, u_char *p_msi, uint32_t len_msi,
u_char *p_msiex, uint32_t len_msiex, BIO *outdata)
{
MSI_OUT out;
int ret = 0;
memset(&out, 0, sizeof(MSI_OUT));
if (!msiout_set(msi, len_msi, len_msiex, &out)) {
goto out; /* FAILED */
}
(void)BIO_seek(outdata, out.sectorSize);
if (!stream_handle(msi, dirent, p_msi, len_msi, p_msiex, len_msiex, outdata, &out, 1)) {
goto out; /* FAILED */
}
ministream_save(dirent, outdata, &out);
minifat_save(outdata, &out);
dirtree_save(dirent, outdata, &out);
if (!fat_save(outdata, &out)) {
goto out; /* FAILED */
}
header_save(outdata, &out);
ret = 1; /* OK */
out:
OPENSSL_free(out.header);
OPENSSL_free(out.fat);
OPENSSL_free(out.minifat);
return ret;
}
/*
* Compute a message digest value of a signed or unsigned MSI file.
* [in] ctx: structure holds input and output data
* [in] md: message digest algorithm
* [returns] calculated message digest BIO
*/
static BIO *msi_digest_calc_bio(FILE_FORMAT_CTX *ctx, BIO *hash)
{
if (ctx->options->add_msi_dse && !msi_calc_MsiDigitalSignatureEx(ctx, hash)) {
printf("Unable to calc MsiDigitalSignatureEx\n");
return NULL; /* FAILED */
}
if (!msi_hash_dir(ctx->msi_ctx->msi, ctx->msi_ctx->dirent, hash, 1)) {
printf("Unable to msi_handle_dir()\n");
return NULL; /* FAILED */
}
return hash;
}
/*
* MsiDigitalSignatureEx is an enhanced signature type that
* can be used when signing MSI files. In addition to
* file content, it also hashes some file metadata, specifically
* file names, file sizes, creation times and modification times.
*
* The file content hashing part stays the same, so the
* msi_handle_dir() function can be used across both variants.
*
* When an MsiDigitalSignatureEx section is present in an MSI file,
* the meaning of the DigitalSignature section changes: Instead
* of being merely a file content hash (as what is output by the
* msi_handle_dir() function), it is now hashes both content
* and metadata.
*
* Here is how it works:
*
* First, a "pre-hash" is calculated. This is the "metadata" hash.
* It iterates over the files in the MSI in the same order as the
* file content hashing method would - but it only processes the
* metadata.
*
* Once the pre-hash is calculated, a new hash is created for
* calculating the hash of the file content. The output of the
* pre-hash is added as the first element of the file content hash.
*
* After the pre-hash is written, what follows is the "regular"
* stream of data that would normally be written when performing
* file content hashing.
*
* The output of this hash, which combines both metadata and file
* content, is what will be output in signed form to the
* DigitalSignature section when in 'MsiDigitalSignatureEx' mode.
*
* As mentioned previously, this new mode of operation is signalled
* by the presence of a 'MsiDigitalSignatureEx' section in the MSI
* file. This section must come after the 'DigitalSignature'
* section, and its content must be the output of the pre-hash
* ("metadata") hash.
*/
static int msi_calc_MsiDigitalSignatureEx(FILE_FORMAT_CTX *ctx, BIO *hash)
{
size_t written;
BIO *prehash = BIO_new(BIO_f_md());
if (!BIO_set_md(prehash, ctx->options->md)) {
printf("Unable to set the message digest of BIO\n");
BIO_free_all(prehash);
return 0; /* FAILED */
}
BIO_push(prehash, BIO_new(BIO_s_null()));
if (!msi_prehash_dir(ctx->msi_ctx->dirent, prehash, 1)) {
printf("Unable to calculate MSI pre-hash ('metadata') hash\n");
return 0; /* FAILED */
}
ctx->msi_ctx->p_msiex = OPENSSL_malloc(EVP_MAX_MD_SIZE);
ctx->msi_ctx->len_msiex = (uint32_t)BIO_gets(prehash,
(char *)ctx->msi_ctx->p_msiex, EVP_MAX_MD_SIZE);
if (!BIO_write_ex(hash, ctx->msi_ctx->p_msiex, ctx->msi_ctx->len_msiex, &written)
|| written != ctx->msi_ctx->len_msiex)
return 0; /* FAILED */
BIO_free_all(prehash);
return 1; /* OK */
}
/*
* Perform a sanity check for the MsiDigitalSignatureEx section.
* If the file we're attempting to sign has an MsiDigitalSignatureEx
* section, we can't add a nested signature of a different MD type
* without breaking the initial signature.
*/
static int msi_check_MsiDigitalSignatureEx(FILE_FORMAT_CTX *ctx, MSI_ENTRY *dse, PKCS7 *p7)
{
if (dse && GET_UINT32_LE(dse->size) != (uint32_t)EVP_MD_size(ctx->options->md)) {
X509_ALGOR *alg;
const ASN1_OBJECT *aoid;
alg = sk_X509_ALGOR_value(p7->d.sign->md_algs, 0);
X509_ALGOR_get0(&aoid, NULL, NULL, alg);
printf("Message digest algorithm found : %s\n", OBJ_nid2sn(OBJ_obj2nid(aoid)));
printf("It is not possible to add a nested signature of a different MD type to the MSI file "
"without invalidating the initial signature, as the file contains MsiDigitalSignatureEx.\n"
"The file should be signed again, rather than adding a nested signature.\n");
return 0; /* FAILED */
}
if (!dse && ctx->options->add_msi_dse) {
printf("It is not possible to add a nested signature using the -add-msi-dse parameter "
"without invalidating the initial signature, as the file does not contain MsiDigitalSignatureEx.\n"
"The file should be signed again, rather than adding a nested signature.\n");
return 0; /* FAILED */
}
if (dse && !ctx->options->add_msi_dse) {
printf("It is not possible to add a signature without using the -add-msi-dse parameter, "
"as doing so would invalidate the initial signature due to the presence of MsiDigitalSignatureEx.\n"
"In this case, consider using the -add-msi-dse option.\n");
return 0; /* FAILED */
}
return 1; /* OK */
}
/*
Local Variables:
c-basic-offset: 4
tab-width: 4
indent-tabs-mode: nil
End:
vim: set ts=4 expandtab:
*/