1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/sshprng.c

293 lines
9.1 KiB
C
Raw Normal View History

Replace PuTTY's PRNG with a Fortuna-like system. This tears out the entire previous random-pool system in sshrand.c. In its place is a system pretty close to Ferguson and Schneier's 'Fortuna' generator, with the main difference being that I use SHA-256 instead of AES for the generation side of the system (rationale given in comment). The PRNG implementation lives in sshprng.c, and defines a self- contained data type with no state stored outside the object, so you can instantiate however many of them you like. The old sshrand.c still exists, but in place of the previous random pool system, it's just become a client of sshprng.c, whose job is to hold a single global instance of the PRNG type, and manage its reference count, save file, noise-collection timers and similar administrative business. Advantages of this change include: - Fortuna is designed with a more varied threat model in mind than my old home-grown random pool. For example, after any request for random numbers, it automatically re-seeds itself, so that if the state of the PRNG should be leaked, it won't give enough information to find out what past outputs _were_. - The PRNG type can be instantiated with any hash function; the instance used by the main tools is based on SHA-256, an improvement on the old pool's use of SHA-1. - The new PRNG only uses the completely standard interface to the hash function API, instead of having to have privileged access to the internal SHA-1 block transform function. This will make it easier to revamp the hash code in general, and also it means that hardware-accelerated versions of SHA-256 will automatically be used for the PRNG as well as for everything else. - The new PRNG can be _tested_! Because it has an actual (if not quite explicit) specification for exactly what the output numbers _ought_ to be derived from the hashes of, I can (and have) put tests in cryptsuite that ensure the output really is being derived in the way I think it is. The old pool could have been returning any old nonsense and it would have been very hard to tell for sure.
2019-01-22 22:42:41 +00:00
/*
* sshprng.c: PuTTY's cryptographic pseudorandom number generator.
*
* This module just defines the PRNG object type and its methods. The
* usual global instance of it is managed by sshrand.c.
*/
#include "putty.h"
#include "ssh.h"
#include "mpint.h"
#ifdef PRNG_DIAGNOSTICS
#define prngdebug debug
#else
#define prngdebug(...) ((void)0)
#endif
/*
* This random number generator is based on the 'Fortuna' design by
* Niels Ferguson and Bruce Schneier. The biggest difference is that I
* use SHA-256 in place of a block cipher: the generator side of the
* system works by computing HASH(key || counter) instead of
* ENCRYPT(counter, key).
*
* Rationale: the Fortuna description itself suggests that using
* SHA-256 would be nice but people wouldn't accept it because it's
* too slow - but PuTTY isn't a heavy enough user of random numbers to
* make that a serious worry. In fact even with SHA-256 this generator
* is faster than the one we previously used. Also the Fortuna
* description worries about periodic rekeying to avoid the barely
* detectable pattern of never repeating a cipher block - but with
* SHA-256, even that shouldn't be a worry, because the output
* 'blocks' are twice the size, and also SHA-256 has no guarantee of
* bijectivity, so it surely _could_ be possible to generate the same
* block from two counter values. Thirdly, Fortuna has to have a hash
* function anyway, for reseeding and entropy collection, so reusing
* the same one means it only depends on one underlying primitive and
* can be easily reinstantiated with a larger hash function if you
* decide you'd like to do that on a particular occasion.
*/
#define NCOLLECTORS 32
#define RESEED_DATA_SIZE 64
typedef struct prng_impl prng_impl;
struct prng_impl {
prng Prng;
const ssh_hashalg *hashalg;
/*
* Generation side:
*
* 'generator' is a hash object with the current key preloaded
* into it. The counter-mode generation is achieved by copying
* that hash object, appending the counter value to the copy, and
* calling ssh_hash_final.
*
* pending_output is a buffer of size equal to the hash length,
* which receives each of those hashes as it's generated. The
* bytes of the hash are returned in reverse order, just because
* that made it marginally easier to deal with the
* pending_output_remaining field.
*/
ssh_hash *generator;
mp_int *counter;
uint8_t *pending_output;
size_t pending_output_remaining;
/*
* When re-seeding the generator, you call prng_seed_begin(),
* which sets up a hash object in 'keymaker'. You write your new
* seed data into it (which you can do by calling put_data on the
* PRNG object itself) and then call prng_seed_finish(), which
* finalises this hash and uses the output to set up the new
* generator.
*
* The keymaker hash preimage includes the previous key, so if you
* just want to change keys for the sake of not keeping the same
* one for too long, you don't have to put any extra seed data in
* at all.
*/
ssh_hash *keymaker;
/*
* Collection side:
*
* There are NCOLLECTORS hash objects collecting entropy. Each
* separately numbered entropy source puts its output into those
* hash objects in the order 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,...,
* that is to say, each entropy source has a separate counter
* which is incremented every time that source generates an event,
* and the event data is added to the collector corresponding to
* the index of the lowest set bit in the current counter value.
*
* Whenever collector #0 has at least RESEED_DATA_SIZE bytes (and
* it's not at least 100ms since the last reseed), the PRNG is
* reseeded, with seed data on reseed #n taken from the first j
* collectors, where j is one more than the number of factors of 2
* in n. That is, collector #0 is used in every reseed; #1 in
* every other one, #2 in every fourth, etc.
*
* 'until_reseed' counts the amount of data that still needs to be
* added to collector #0 before a reseed will be triggered.
*/
uint32_t source_counters[NOISE_MAX_SOURCES];
ssh_hash *collectors[NCOLLECTORS];
size_t until_reseed;
uint32_t reseeds;
uint64_t last_reseed_time;
};
static void prng_seed_BinarySink_write(
BinarySink *bs, const void *data, size_t len);
prng *prng_new(const ssh_hashalg *hashalg)
{
prng_impl *pi = snew(prng_impl);
memset(pi, 0, sizeof(prng_impl));
pi->hashalg = hashalg;
pi->keymaker = NULL;
pi->generator = NULL;
pi->pending_output = snewn(pi->hashalg->hlen, uint8_t);
pi->pending_output_remaining = 0;
pi->counter = mp_new(128);
for (size_t i = 0; i < NCOLLECTORS; i++)
pi->collectors[i] = ssh_hash_new(pi->hashalg);
pi->until_reseed = 0;
BinarySink_INIT(&pi->Prng, prng_seed_BinarySink_write);
pi->Prng.savesize = pi->hashalg->hlen * 4;
return &pi->Prng;
}
void prng_free(prng *pr)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
sfree(pi->pending_output);
mp_free(pi->counter);
for (size_t i = 0; i < NCOLLECTORS; i++)
ssh_hash_free(pi->collectors[i]);
if (pi->generator)
ssh_hash_free(pi->generator);
if (pi->keymaker)
ssh_hash_free(pi->keymaker);
smemclr(pi, sizeof(*pi));
sfree(pi);
}
void prng_seed_begin(prng *pr)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
assert(!pi->keymaker);
prngdebug("prng: reseed begin\n");
/*
* Make a hash instance that will generate the key for the new one.
*/
if (pi->generator) {
pi->keymaker = pi->generator;
pi->generator = NULL;
} else {
pi->keymaker = ssh_hash_new(pi->hashalg);
}
put_byte(pi->keymaker, 'R');
}
static void prng_seed_BinarySink_write(
BinarySink *bs, const void *data, size_t len)
{
prng *pr = BinarySink_DOWNCAST(bs, prng);
prng_impl *pi = container_of(pr, prng_impl, Prng);
assert(pi->keymaker);
prngdebug("prng: got %"SIZEu" bytes of seed\n", len);
Replace PuTTY's PRNG with a Fortuna-like system. This tears out the entire previous random-pool system in sshrand.c. In its place is a system pretty close to Ferguson and Schneier's 'Fortuna' generator, with the main difference being that I use SHA-256 instead of AES for the generation side of the system (rationale given in comment). The PRNG implementation lives in sshprng.c, and defines a self- contained data type with no state stored outside the object, so you can instantiate however many of them you like. The old sshrand.c still exists, but in place of the previous random pool system, it's just become a client of sshprng.c, whose job is to hold a single global instance of the PRNG type, and manage its reference count, save file, noise-collection timers and similar administrative business. Advantages of this change include: - Fortuna is designed with a more varied threat model in mind than my old home-grown random pool. For example, after any request for random numbers, it automatically re-seeds itself, so that if the state of the PRNG should be leaked, it won't give enough information to find out what past outputs _were_. - The PRNG type can be instantiated with any hash function; the instance used by the main tools is based on SHA-256, an improvement on the old pool's use of SHA-1. - The new PRNG only uses the completely standard interface to the hash function API, instead of having to have privileged access to the internal SHA-1 block transform function. This will make it easier to revamp the hash code in general, and also it means that hardware-accelerated versions of SHA-256 will automatically be used for the PRNG as well as for everything else. - The new PRNG can be _tested_! Because it has an actual (if not quite explicit) specification for exactly what the output numbers _ought_ to be derived from the hashes of, I can (and have) put tests in cryptsuite that ensure the output really is being derived in the way I think it is. The old pool could have been returning any old nonsense and it would have been very hard to tell for sure.
2019-01-22 22:42:41 +00:00
put_data(pi->keymaker, data, len);
}
void prng_seed_finish(prng *pr)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
assert(pi->keymaker);
prngdebug("prng: reseed finish\n");
/*
* Actually generate the key.
*/
ssh_hash_final(pi->keymaker, pi->pending_output);
pi->keymaker = NULL;
/*
* Load that key into a fresh hash instance, which will become the
* new generator.
*/
assert(!pi->generator);
pi->generator = ssh_hash_new(pi->hashalg);
put_data(pi->generator, pi->pending_output, pi->hashalg->hlen);
smemclr(pi->pending_output, pi->hashalg->hlen);
pi->until_reseed = RESEED_DATA_SIZE;
pi->last_reseed_time = prng_reseed_time_ms();
pi->pending_output_remaining = 0;
}
static inline void prng_generate(prng_impl *pi)
{
ssh_hash *h = ssh_hash_copy(pi->generator);
prngdebug("prng_generate\n");
put_byte(h, 'G');
put_mp_ssh2(h, pi->counter);
mp_add_integer_into(pi->counter, pi->counter, 1);
ssh_hash_final(h, pi->pending_output);
pi->pending_output_remaining = pi->hashalg->hlen;
}
void prng_read(prng *pr, void *vout, size_t size)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
assert(!pi->keymaker);
prngdebug("prng_read %"SIZEu"\n", size);
Replace PuTTY's PRNG with a Fortuna-like system. This tears out the entire previous random-pool system in sshrand.c. In its place is a system pretty close to Ferguson and Schneier's 'Fortuna' generator, with the main difference being that I use SHA-256 instead of AES for the generation side of the system (rationale given in comment). The PRNG implementation lives in sshprng.c, and defines a self- contained data type with no state stored outside the object, so you can instantiate however many of them you like. The old sshrand.c still exists, but in place of the previous random pool system, it's just become a client of sshprng.c, whose job is to hold a single global instance of the PRNG type, and manage its reference count, save file, noise-collection timers and similar administrative business. Advantages of this change include: - Fortuna is designed with a more varied threat model in mind than my old home-grown random pool. For example, after any request for random numbers, it automatically re-seeds itself, so that if the state of the PRNG should be leaked, it won't give enough information to find out what past outputs _were_. - The PRNG type can be instantiated with any hash function; the instance used by the main tools is based on SHA-256, an improvement on the old pool's use of SHA-1. - The new PRNG only uses the completely standard interface to the hash function API, instead of having to have privileged access to the internal SHA-1 block transform function. This will make it easier to revamp the hash code in general, and also it means that hardware-accelerated versions of SHA-256 will automatically be used for the PRNG as well as for everything else. - The new PRNG can be _tested_! Because it has an actual (if not quite explicit) specification for exactly what the output numbers _ought_ to be derived from the hashes of, I can (and have) put tests in cryptsuite that ensure the output really is being derived in the way I think it is. The old pool could have been returning any old nonsense and it would have been very hard to tell for sure.
2019-01-22 22:42:41 +00:00
uint8_t *out = (uint8_t *)vout;
for (; size > 0; size--) {
if (pi->pending_output_remaining == 0)
prng_generate(pi);
pi->pending_output_remaining--;
*out++ = pi->pending_output[pi->pending_output_remaining];
pi->pending_output[pi->pending_output_remaining] = 0;
}
prng_seed_begin(&pi->Prng);
prng_seed_finish(&pi->Prng);
}
void prng_add_entropy(prng *pr, unsigned source_id, ptrlen data)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
assert(source_id < NOISE_MAX_SOURCES);
uint32_t counter = ++pi->source_counters[source_id];
size_t index = 0;
while (index+1 < NCOLLECTORS && !(counter & 1)) {
counter >>= 1;
index++;
}
prngdebug("prng_add_entropy source=%u size=%"SIZEu" -> collector %zi\n",
Replace PuTTY's PRNG with a Fortuna-like system. This tears out the entire previous random-pool system in sshrand.c. In its place is a system pretty close to Ferguson and Schneier's 'Fortuna' generator, with the main difference being that I use SHA-256 instead of AES for the generation side of the system (rationale given in comment). The PRNG implementation lives in sshprng.c, and defines a self- contained data type with no state stored outside the object, so you can instantiate however many of them you like. The old sshrand.c still exists, but in place of the previous random pool system, it's just become a client of sshprng.c, whose job is to hold a single global instance of the PRNG type, and manage its reference count, save file, noise-collection timers and similar administrative business. Advantages of this change include: - Fortuna is designed with a more varied threat model in mind than my old home-grown random pool. For example, after any request for random numbers, it automatically re-seeds itself, so that if the state of the PRNG should be leaked, it won't give enough information to find out what past outputs _were_. - The PRNG type can be instantiated with any hash function; the instance used by the main tools is based on SHA-256, an improvement on the old pool's use of SHA-1. - The new PRNG only uses the completely standard interface to the hash function API, instead of having to have privileged access to the internal SHA-1 block transform function. This will make it easier to revamp the hash code in general, and also it means that hardware-accelerated versions of SHA-256 will automatically be used for the PRNG as well as for everything else. - The new PRNG can be _tested_! Because it has an actual (if not quite explicit) specification for exactly what the output numbers _ought_ to be derived from the hashes of, I can (and have) put tests in cryptsuite that ensure the output really is being derived in the way I think it is. The old pool could have been returning any old nonsense and it would have been very hard to tell for sure.
2019-01-22 22:42:41 +00:00
source_id, data.len, index);
put_datapl(pi->collectors[index], data);
if (index == 0)
pi->until_reseed = (pi->until_reseed < data.len ? 0 :
pi->until_reseed - data.len);
if (pi->until_reseed == 0 &&
prng_reseed_time_ms() - pi->last_reseed_time >= 100) {
prng_seed_begin(&pi->Prng);
uint32_t reseed_index = ++pi->reseeds;
prngdebug("prng entropy reseed #%"PRIu32"\n", reseed_index);
for (size_t i = 0; i < NCOLLECTORS; i++) {
prngdebug("emptying collector %"SIZEu"\n", i);
Replace PuTTY's PRNG with a Fortuna-like system. This tears out the entire previous random-pool system in sshrand.c. In its place is a system pretty close to Ferguson and Schneier's 'Fortuna' generator, with the main difference being that I use SHA-256 instead of AES for the generation side of the system (rationale given in comment). The PRNG implementation lives in sshprng.c, and defines a self- contained data type with no state stored outside the object, so you can instantiate however many of them you like. The old sshrand.c still exists, but in place of the previous random pool system, it's just become a client of sshprng.c, whose job is to hold a single global instance of the PRNG type, and manage its reference count, save file, noise-collection timers and similar administrative business. Advantages of this change include: - Fortuna is designed with a more varied threat model in mind than my old home-grown random pool. For example, after any request for random numbers, it automatically re-seeds itself, so that if the state of the PRNG should be leaked, it won't give enough information to find out what past outputs _were_. - The PRNG type can be instantiated with any hash function; the instance used by the main tools is based on SHA-256, an improvement on the old pool's use of SHA-1. - The new PRNG only uses the completely standard interface to the hash function API, instead of having to have privileged access to the internal SHA-1 block transform function. This will make it easier to revamp the hash code in general, and also it means that hardware-accelerated versions of SHA-256 will automatically be used for the PRNG as well as for everything else. - The new PRNG can be _tested_! Because it has an actual (if not quite explicit) specification for exactly what the output numbers _ought_ to be derived from the hashes of, I can (and have) put tests in cryptsuite that ensure the output really is being derived in the way I think it is. The old pool could have been returning any old nonsense and it would have been very hard to tell for sure.
2019-01-22 22:42:41 +00:00
ssh_hash_final(pi->collectors[i], pi->pending_output);
put_data(&pi->Prng, pi->pending_output, pi->hashalg->hlen);
pi->collectors[i] = ssh_hash_new(pi->hashalg);
if (reseed_index & 1)
break;
reseed_index >>= 1;
}
prng_seed_finish(&pi->Prng);
}
}
size_t prng_seed_bits(prng *pr)
{
prng_impl *pi = container_of(pr, prng_impl, Prng);
return pi->hashalg->hlen * 8;
}