1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 18:07:59 +00:00
putty-source/windows/winsftp.c

769 lines
16 KiB
C
Raw Normal View History

/*
* winsftp.c: the Windows-specific parts of PSFTP and PSCP.
*/
#include <winsock2.h> /* need to put this first, for winelib builds */
#include <assert.h>
#define NEED_DECLARATION_OF_SELECT
#include "putty.h"
#include "psftp.h"
#include "ssh.h"
#include "int64.h"
#include "winsecur.h"
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
int filexfer_get_userpass_input(Seat *seat, prompts_t *p, bufchain *input)
{
int ret;
ret = cmdline_get_passwd_input(p);
if (ret == -1)
ret = console_get_userpass_input(p);
return ret;
}
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
void platform_get_x11_auth(struct X11Display *display, Conf *conf)
{
/* Do nothing, therefore no auth. */
}
const int platform_uses_x11_unix_by_default = TRUE;
/* ----------------------------------------------------------------------
* File access abstraction.
*/
/*
* Set local current directory. Returns NULL on success, or else an
* error message which must be freed after printing.
*/
char *psftp_lcd(char *dir)
{
char *ret = NULL;
if (!SetCurrentDirectory(dir)) {
LPVOID message;
int i;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR)&message, 0, NULL);
i = strcspn((char *)message, "\n");
ret = dupprintf("%.*s", i, (LPCTSTR)message);
LocalFree(message);
}
return ret;
}
/*
* Get local current directory. Returns a string which must be
* freed.
*/
char *psftp_getcwd(void)
{
char *ret = snewn(256, char);
int len = GetCurrentDirectory(256, ret);
if (len > 256)
ret = sresize(ret, len, char);
GetCurrentDirectory(len, ret);
return ret;
}
#define TIME_POSIX_TO_WIN(t, ft) do { \
ULARGE_INTEGER uli; \
uli.QuadPart = ((ULONGLONG)(t) + 11644473600ull) * 10000000ull; \
(ft).dwLowDateTime = uli.LowPart; \
(ft).dwHighDateTime = uli.HighPart; \
} while(0)
#define TIME_WIN_TO_POSIX(ft, t) do { \
ULARGE_INTEGER uli; \
uli.LowPart = (ft).dwLowDateTime; \
uli.HighPart = (ft).dwHighDateTime; \
uli.QuadPart = uli.QuadPart / 10000000ull - 11644473600ull; \
(t) = (unsigned long) uli.QuadPart; \
} while(0)
struct RFile {
HANDLE h;
};
RFile *open_existing_file(const char *name, uint64 *size,
unsigned long *mtime, unsigned long *atime,
long *perms)
{
HANDLE h;
RFile *ret;
h = CreateFile(name, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, 0, 0);
if (h == INVALID_HANDLE_VALUE)
return NULL;
ret = snew(RFile);
ret->h = h;
if (size) {
DWORD lo, hi;
lo = GetFileSize(h, &hi);
size->lo = lo;
size->hi = hi;
}
if (mtime || atime) {
FILETIME actime, wrtime;
GetFileTime(h, NULL, &actime, &wrtime);
if (atime)
TIME_WIN_TO_POSIX(actime, *atime);
if (mtime)
TIME_WIN_TO_POSIX(wrtime, *mtime);
}
if (perms)
*perms = -1;
return ret;
}
int read_from_file(RFile *f, void *buffer, int length)
{
int ret;
DWORD read;
ret = ReadFile(f->h, buffer, length, &read, NULL);
if (!ret)
return -1; /* error */
else
return read;
}
void close_rfile(RFile *f)
{
CloseHandle(f->h);
sfree(f);
}
struct WFile {
HANDLE h;
};
WFile *open_new_file(const char *name, long perms)
{
HANDLE h;
WFile *ret;
h = CreateFile(name, GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
if (h == INVALID_HANDLE_VALUE)
return NULL;
ret = snew(WFile);
ret->h = h;
return ret;
}
WFile *open_existing_wfile(const char *name, uint64 *size)
{
HANDLE h;
WFile *ret;
h = CreateFile(name, GENERIC_WRITE, FILE_SHARE_READ, NULL,
OPEN_EXISTING, 0, 0);
if (h == INVALID_HANDLE_VALUE)
return NULL;
ret = snew(WFile);
ret->h = h;
if (size) {
DWORD lo, hi;
lo = GetFileSize(h, &hi);
size->lo = lo;
size->hi = hi;
}
return ret;
}
int write_to_file(WFile *f, void *buffer, int length)
{
int ret;
DWORD written;
ret = WriteFile(f->h, buffer, length, &written, NULL);
if (!ret)
return -1; /* error */
else
return written;
}
void set_file_times(WFile *f, unsigned long mtime, unsigned long atime)
{
FILETIME actime, wrtime;
TIME_POSIX_TO_WIN(atime, actime);
TIME_POSIX_TO_WIN(mtime, wrtime);
SetFileTime(f->h, NULL, &actime, &wrtime);
}
void close_wfile(WFile *f)
{
CloseHandle(f->h);
sfree(f);
}
/* Seek offset bytes through file, from whence, where whence is
FROM_START, FROM_CURRENT, or FROM_END */
int seek_file(WFile *f, uint64 offset, int whence)
{
DWORD movemethod;
switch (whence) {
case FROM_START:
movemethod = FILE_BEGIN;
break;
case FROM_CURRENT:
movemethod = FILE_CURRENT;
break;
case FROM_END:
movemethod = FILE_END;
break;
default:
return -1;
}
{
LONG lo = offset.lo, hi = offset.hi;
SetFilePointer(f->h, lo, &hi, movemethod);
}
if (GetLastError() != NO_ERROR)
return -1;
else
return 0;
}
uint64 get_file_posn(WFile *f)
{
uint64 ret;
LONG lo, hi = 0;
lo = SetFilePointer(f->h, 0L, &hi, FILE_CURRENT);
ret.lo = lo;
ret.hi = hi;
return ret;
}
int file_type(const char *name)
{
DWORD attr;
attr = GetFileAttributes(name);
/* We know of no `weird' files under Windows. */
if (attr == (DWORD)-1)
return FILE_TYPE_NONEXISTENT;
else if (attr & FILE_ATTRIBUTE_DIRECTORY)
return FILE_TYPE_DIRECTORY;
else
return FILE_TYPE_FILE;
}
struct DirHandle {
HANDLE h;
char *name;
};
DirHandle *open_directory(const char *name)
{
HANDLE h;
WIN32_FIND_DATA fdat;
char *findfile;
DirHandle *ret;
/* Enumerate files in dir `foo'. */
findfile = dupcat(name, "/*", NULL);
h = FindFirstFile(findfile, &fdat);
if (h == INVALID_HANDLE_VALUE)
return NULL;
sfree(findfile);
ret = snew(DirHandle);
ret->h = h;
ret->name = dupstr(fdat.cFileName);
return ret;
}
char *read_filename(DirHandle *dir)
{
do {
if (!dir->name) {
WIN32_FIND_DATA fdat;
int ok = FindNextFile(dir->h, &fdat);
if (!ok)
return NULL;
else
dir->name = dupstr(fdat.cFileName);
}
assert(dir->name);
if (dir->name[0] == '.' &&
(dir->name[1] == '\0' ||
(dir->name[1] == '.' && dir->name[2] == '\0'))) {
sfree(dir->name);
dir->name = NULL;
}
} while (!dir->name);
if (dir->name) {
char *ret = dir->name;
dir->name = NULL;
return ret;
} else
return NULL;
}
void close_directory(DirHandle *dir)
{
FindClose(dir->h);
if (dir->name)
sfree(dir->name);
sfree(dir);
}
int test_wildcard(const char *name, int cmdline)
{
HANDLE fh;
WIN32_FIND_DATA fdat;
/* First see if the exact name exists. */
if (GetFileAttributes(name) != (DWORD)-1)
return WCTYPE_FILENAME;
/* Otherwise see if a wildcard match finds anything. */
fh = FindFirstFile(name, &fdat);
if (fh == INVALID_HANDLE_VALUE)
return WCTYPE_NONEXISTENT;
FindClose(fh);
return WCTYPE_WILDCARD;
}
struct WildcardMatcher {
HANDLE h;
char *name;
char *srcpath;
};
char *stripslashes(const char *str, int local)
{
char *p;
/*
* On Windows, \ / : are all path component separators.
*/
if (local) {
p = strchr(str, ':');
if (p) str = p+1;
}
p = strrchr(str, '/');
if (p) str = p+1;
if (local) {
p = strrchr(str, '\\');
if (p) str = p+1;
}
return (char *)str;
}
WildcardMatcher *begin_wildcard_matching(const char *name)
{
HANDLE h;
WIN32_FIND_DATA fdat;
WildcardMatcher *ret;
char *last;
h = FindFirstFile(name, &fdat);
if (h == INVALID_HANDLE_VALUE)
return NULL;
ret = snew(WildcardMatcher);
ret->h = h;
ret->srcpath = dupstr(name);
last = stripslashes(ret->srcpath, 1);
*last = '\0';
if (fdat.cFileName[0] == '.' &&
(fdat.cFileName[1] == '\0' ||
(fdat.cFileName[1] == '.' && fdat.cFileName[2] == '\0')))
ret->name = NULL;
else
ret->name = dupcat(ret->srcpath, fdat.cFileName, NULL);
return ret;
}
char *wildcard_get_filename(WildcardMatcher *dir)
{
while (!dir->name) {
WIN32_FIND_DATA fdat;
int ok = FindNextFile(dir->h, &fdat);
if (!ok)
return NULL;
if (fdat.cFileName[0] == '.' &&
(fdat.cFileName[1] == '\0' ||
(fdat.cFileName[1] == '.' && fdat.cFileName[2] == '\0')))
dir->name = NULL;
else
dir->name = dupcat(dir->srcpath, fdat.cFileName, NULL);
}
if (dir->name) {
char *ret = dir->name;
dir->name = NULL;
return ret;
} else
return NULL;
}
void finish_wildcard_matching(WildcardMatcher *dir)
{
FindClose(dir->h);
if (dir->name)
sfree(dir->name);
sfree(dir->srcpath);
sfree(dir);
}
int vet_filename(const char *name)
{
if (strchr(name, '/') || strchr(name, '\\') || strchr(name, ':'))
return FALSE;
if (!name[strspn(name, ".")]) /* entirely composed of dots */
return FALSE;
return TRUE;
}
int create_directory(const char *name)
{
return CreateDirectory(name, NULL) != 0;
}
char *dir_file_cat(const char *dir, const char *file)
{
return dupcat(dir, "\\", file, NULL);
}
/* ----------------------------------------------------------------------
* Platform-specific network handling.
*/
/*
* Be told what socket we're supposed to be using.
*/
static SOCKET sftp_ssh_socket = INVALID_SOCKET;
static HANDLE netevent = INVALID_HANDLE_VALUE;
char *do_select(SOCKET skt, int startup)
{
int events;
if (startup)
sftp_ssh_socket = skt;
else
sftp_ssh_socket = INVALID_SOCKET;
if (p_WSAEventSelect) {
if (startup) {
events = (FD_CONNECT | FD_READ | FD_WRITE |
FD_OOB | FD_CLOSE | FD_ACCEPT);
netevent = CreateEvent(NULL, FALSE, FALSE, NULL);
} else {
events = 0;
}
if (p_WSAEventSelect(skt, netevent, events) == SOCKET_ERROR) {
switch (p_WSAGetLastError()) {
case WSAENETDOWN:
return "Network is down";
default:
return "WSAEventSelect(): unknown error";
}
}
}
return NULL;
}
int do_eventsel_loop(HANDLE other_event)
{
int n, nhandles, nallhandles, netindex, otherindex;
unsigned long next, then;
long ticks;
HANDLE *handles;
SOCKET *sklist;
int skcount;
unsigned long now = GETTICKCOUNT();
if (toplevel_callback_pending()) {
ticks = 0;
next = now;
} else if (run_timers(now, &next)) {
then = now;
now = GETTICKCOUNT();
if (now - then > next - then)
ticks = 0;
else
ticks = next - now;
} else {
ticks = INFINITE;
/* no need to initialise next here because we can never get
* WAIT_TIMEOUT */
}
handles = handle_get_events(&nhandles);
handles = sresize(handles, nhandles+2, HANDLE);
nallhandles = nhandles;
if (netevent != INVALID_HANDLE_VALUE)
handles[netindex = nallhandles++] = netevent;
else
netindex = -1;
if (other_event != INVALID_HANDLE_VALUE)
handles[otherindex = nallhandles++] = other_event;
else
otherindex = -1;
n = WaitForMultipleObjects(nallhandles, handles, FALSE, ticks);
if ((unsigned)(n - WAIT_OBJECT_0) < (unsigned)nhandles) {
handle_got_event(handles[n - WAIT_OBJECT_0]);
} else if (netindex >= 0 && n == WAIT_OBJECT_0 + netindex) {
WSANETWORKEVENTS things;
SOCKET socket;
extern SOCKET first_socket(int *), next_socket(int *);
int i, socketstate;
/*
* We must not call select_result() for any socket
* until we have finished enumerating within the
* tree. This is because select_result() may close
* the socket and modify the tree.
*/
/* Count the active sockets. */
i = 0;
for (socket = first_socket(&socketstate);
socket != INVALID_SOCKET;
socket = next_socket(&socketstate)) i++;
/* Expand the buffer if necessary. */
sklist = snewn(i, SOCKET);
/* Retrieve the sockets into sklist. */
skcount = 0;
for (socket = first_socket(&socketstate);
socket != INVALID_SOCKET;
socket = next_socket(&socketstate)) {
sklist[skcount++] = socket;
}
/* Now we're done enumerating; go through the list. */
for (i = 0; i < skcount; i++) {
WPARAM wp;
socket = sklist[i];
wp = (WPARAM) socket;
if (!p_WSAEnumNetworkEvents(socket, NULL, &things)) {
static const struct { int bit, mask; } eventtypes[] = {
{FD_CONNECT_BIT, FD_CONNECT},
{FD_READ_BIT, FD_READ},
{FD_CLOSE_BIT, FD_CLOSE},
{FD_OOB_BIT, FD_OOB},
{FD_WRITE_BIT, FD_WRITE},
{FD_ACCEPT_BIT, FD_ACCEPT},
};
int e;
noise_ultralight(socket);
noise_ultralight(things.lNetworkEvents);
for (e = 0; e < lenof(eventtypes); e++)
if (things.lNetworkEvents & eventtypes[e].mask) {
LPARAM lp;
int err = things.iErrorCode[eventtypes[e].bit];
lp = WSAMAKESELECTREPLY(eventtypes[e].mask, err);
select_result(wp, lp);
}
}
}
sfree(sklist);
}
sfree(handles);
run_toplevel_callbacks();
if (n == WAIT_TIMEOUT) {
now = next;
} else {
now = GETTICKCOUNT();
}
if (otherindex >= 0 && n == WAIT_OBJECT_0 + otherindex)
return 1;
return 0;
}
/*
* Wait for some network data and process it.
*
* We have two variants of this function. One uses select() so that
* it's compatible with WinSock 1. The other uses WSAEventSelect
* and MsgWaitForMultipleObjects, so that we can consistently use
* WSAEventSelect throughout; this enables us to also implement
* ssh_sftp_get_cmdline() using a parallel mechanism.
*/
int ssh_sftp_loop_iteration(void)
{
if (p_WSAEventSelect == NULL) {
fd_set readfds;
int ret;
unsigned long now = GETTICKCOUNT(), then;
if (sftp_ssh_socket == INVALID_SOCKET)
return -1; /* doom */
if (socket_writable(sftp_ssh_socket))
select_result((WPARAM) sftp_ssh_socket, (LPARAM) FD_WRITE);
do {
unsigned long next;
long ticks;
struct timeval tv, *ptv;
if (run_timers(now, &next)) {
then = now;
now = GETTICKCOUNT();
if (now - then > next - then)
ticks = 0;
else
ticks = next - now;
tv.tv_sec = ticks / 1000;
tv.tv_usec = ticks % 1000 * 1000;
ptv = &tv;
} else {
ptv = NULL;
}
FD_ZERO(&readfds);
FD_SET(sftp_ssh_socket, &readfds);
ret = p_select(1, &readfds, NULL, NULL, ptv);
if (ret < 0)
return -1; /* doom */
else if (ret == 0)
now = next;
else
now = GETTICKCOUNT();
} while (ret == 0);
select_result((WPARAM) sftp_ssh_socket, (LPARAM) FD_READ);
return 0;
} else {
return do_eventsel_loop(INVALID_HANDLE_VALUE);
}
}
/*
* Read a command line from standard input.
*
* In the presence of WinSock 2, we can use WSAEventSelect to
* mediate between the socket and stdin, meaning we can send
* keepalives and respond to server events even while waiting at
* the PSFTP command prompt. Without WS2, we fall back to a simple
* fgets.
*/
struct command_read_ctx {
HANDLE event;
char *line;
};
static DWORD WINAPI command_read_thread(void *param)
{
struct command_read_ctx *ctx = (struct command_read_ctx *) param;
ctx->line = fgetline(stdin);
SetEvent(ctx->event);
return 0;
}
char *ssh_sftp_get_cmdline(const char *prompt, int no_fds_ok)
{
int ret;
struct command_read_ctx actx, *ctx = &actx;
DWORD threadid;
HANDLE hThread;
fputs(prompt, stdout);
fflush(stdout);
if ((sftp_ssh_socket == INVALID_SOCKET && no_fds_ok) ||
p_WSAEventSelect == NULL) {
return fgetline(stdin); /* very simple */
}
/*
* Create a second thread to read from stdin. Process network
* and timing events until it terminates.
*/
ctx->event = CreateEvent(NULL, FALSE, FALSE, NULL);
ctx->line = NULL;
hThread = CreateThread(NULL, 0, command_read_thread, ctx, 0, &threadid);
if (!hThread) {
CloseHandle(ctx->event);
fprintf(stderr, "Unable to create command input thread\n");
cleanup_exit(1);
}
do {
ret = do_eventsel_loop(ctx->event);
/* Error return can only occur if netevent==NULL, and it ain't. */
assert(ret >= 0);
} while (ret == 0);
CloseHandle(hThread);
CloseHandle(ctx->event);
return ctx->line;
}
void platform_psftp_pre_conn_setup(void)
{
if (restricted_acl) {
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
lp_eventlog(default_logpolicy, "Running with restricted process ACL");
}
}
/* ----------------------------------------------------------------------
* Main program. Parse arguments etc.
*/
int main(int argc, char *argv[])
{
int ret;
dll_hijacking_protection();
ret = psftp_main(argc, argv);
return ret;
}