1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/sshecc.c

2112 lines
53 KiB
C
Raw Normal View History

/*
* Elliptic-curve crypto module for PuTTY
* Implements the three required curves, no optional curves
* NOTE: Only curves on prime field are handled by the maths functions
*/
/*
* References:
*
* Elliptic curves in SSH are specified in RFC 5656:
* http://tools.ietf.org/html/rfc5656
*
* That specification delegates details of public key formatting and a
* lot of underlying mechanism to SEC 1:
* http://www.secg.org/sec1-v2.pdf
*/
#include <stdlib.h>
#include <assert.h>
#include "ssh.h"
/* ----------------------------------------------------------------------
* Elliptic curve definitions
*/
static int initialise_curve(struct ec_curve *curve, int bits, unsigned char *p,
unsigned char *a, unsigned char *b,
unsigned char *n, unsigned char *Gx,
unsigned char *Gy)
{
int length = bits / 8;
if (bits % 8) ++length;
curve->fieldBits = bits;
curve->p = bignum_from_bytes(p, length);
if (!curve->p) goto error;
/* Curve co-efficients */
curve->a = bignum_from_bytes(a, length);
if (!curve->a) goto error;
curve->b = bignum_from_bytes(b, length);
if (!curve->b) goto error;
/* Group order and generator */
curve->n = bignum_from_bytes(n, length);
if (!curve->n) goto error;
curve->G.x = bignum_from_bytes(Gx, length);
if (!curve->G.x) goto error;
curve->G.y = bignum_from_bytes(Gy, length);
if (!curve->G.y) goto error;
curve->G.curve = curve;
curve->G.infinity = 0;
return 1;
error:
if (curve->p) freebn(curve->p);
if (curve->a) freebn(curve->a);
if (curve->b) freebn(curve->b);
if (curve->n) freebn(curve->n);
if (curve->G.x) freebn(curve->G.x);
return 0;
}
unsigned char nistp256_oid[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07};
int nistp256_oid_len = 8;
unsigned char nistp384_oid[] = {0x2b, 0x81, 0x04, 0x00, 0x22};
int nistp384_oid_len = 5;
unsigned char nistp521_oid[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
int nistp521_oid_len = 5;
struct ec_curve *ec_p256(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
unsigned char p[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
unsigned char a[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc
};
unsigned char b[] = {
0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7,
0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b
};
unsigned char n[] = {
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51
};
unsigned char Gx[] = {
0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96
};
unsigned char Gy[] = {
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b,
0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5
};
if (!initialise_curve(&curve, 256, p, a, b, n, Gx, Gy)) {
return NULL;
}
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
struct ec_curve *ec_p384(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
unsigned char p[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff
};
unsigned char a[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfc
};
unsigned char b[] = {
0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4,
0x98, 0x8e, 0x05, 0x6b, 0xe3, 0xf8, 0x2d, 0x19,
0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12,
0x03, 0x14, 0x08, 0x8f, 0x50, 0x13, 0x87, 0x5a,
0xc6, 0x56, 0x39, 0x8d, 0x8a, 0x2e, 0xd1, 0x9d,
0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef
};
unsigned char n[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xc7, 0x63, 0x4d, 0x81, 0xf4, 0x37, 0x2d, 0xdf,
0x58, 0x1a, 0x0d, 0xb2, 0x48, 0xb0, 0xa7, 0x7a,
0xec, 0xec, 0x19, 0x6a, 0xcc, 0xc5, 0x29, 0x73
};
unsigned char Gx[] = {
0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x05, 0x37,
0x8e, 0xb1, 0xc7, 0x1e, 0xf3, 0x20, 0xad, 0x74,
0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98,
0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38,
0x55, 0x02, 0xf2, 0x5d, 0xbf, 0x55, 0x29, 0x6c,
0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0x0a, 0xb7
};
unsigned char Gy[] = {
0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f,
0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29,
0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c,
0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0,
0x0a, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d,
0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f
};
if (!initialise_curve(&curve, 384, p, a, b, n, Gx, Gy)) {
return NULL;
}
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
struct ec_curve *ec_p521(void)
{
static struct ec_curve curve = { 0 };
static unsigned char initialised = 0;
if (!initialised)
{
unsigned char p[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff
};
unsigned char a[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfc
};
unsigned char b[] = {
0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c,
0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
0x3f, 0x00
};
unsigned char n[] = {
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xfa, 0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f,
0x96, 0x6b, 0x7f, 0xcc, 0x01, 0x48, 0xf7, 0x09,
0xa5, 0xd0, 0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c,
0x47, 0xae, 0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38,
0x64, 0x09
};
unsigned char Gx[] = {
0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04,
0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
0xbd, 0x66
};
unsigned char Gy[] = {
0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b,
0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
0x66, 0x50
};
if (!initialise_curve(&curve, 521, p, a, b, n, Gx, Gy)) {
return NULL;
}
/* Now initialised, no need to do it again */
initialised = 1;
}
return &curve;
}
static struct ec_curve *ec_name_to_curve(char *name, int len) {
if (len == 8 && !memcmp(name, "nistp", 5)) {
name += 5;
if (!memcmp(name, "256", 3)) {
return ec_p256();
} else if (!memcmp(name, "384", 3)) {
return ec_p384();
} else if (!memcmp(name, "521", 3)) {
return ec_p521();
}
}
return NULL;
}
static int ec_curve_to_name(const struct ec_curve *curve, unsigned char *name, int len) {
/* Return length of string */
if (name == NULL) return 8;
/* Not enough space for the name */
if (len < 8) return 0;
/* Put the name in the buffer */
switch (curve->fieldBits) {
case 256:
memcpy(name+5, "256", 3);
break;
case 384:
memcpy(name+5, "384", 3);
break;
case 521:
memcpy(name+5, "521", 3);
break;
default:
return 0;
}
memcpy(name, "nistp", 5);
return 8;
}
/* Return 1 if a is -3 % p, otherwise return 0
* This is used because there are some maths optimisations */
static int ec_aminus3(const struct ec_curve *curve)
{
int ret;
Bignum _p;
_p = bignum_add_long(curve->a, 3);
if (!_p) return 0;
ret = !bignum_cmp(curve->p, _p);
freebn(_p);
return ret;
}
/* ----------------------------------------------------------------------
* Elliptic curve field maths
*/
static Bignum ecf_add(const Bignum a, const Bignum b,
const struct ec_curve *curve)
{
Bignum a1, b1, ab, ret;
a1 = bigmod(a, curve->p);
if (!a1) return NULL;
b1 = bigmod(b, curve->p);
if (!b1)
{
freebn(a1);
return NULL;
}
ab = bigadd(a1, b1);
freebn(a1);
freebn(b1);
if (!ab) return NULL;
ret = bigmod(ab, curve->p);
freebn(ab);
return ret;
}
static Bignum ecf_square(const Bignum a, const struct ec_curve *curve)
{
return modmul(a, a, curve->p);
}
static Bignum ecf_treble(const Bignum a, const struct ec_curve *curve)
{
Bignum ret, tmp;
/* Double */
tmp = bignum_lshift(a, 1);
if (!tmp) return NULL;
/* Add itself (i.e. treble) */
ret = bigadd(tmp, a);
freebn(tmp);
/* Normalise */
while (ret != NULL && bignum_cmp(ret, curve->p) >= 0)
{
tmp = bigsub(ret, curve->p);
freebn(ret);
ret = tmp;
}
return ret;
}
static Bignum ecf_double(const Bignum a, const struct ec_curve *curve)
{
Bignum ret = bignum_lshift(a, 1);
if (!ret) return NULL;
if (bignum_cmp(ret, curve->p) >= 0)
{
Bignum tmp = bigsub(ret, curve->p);
freebn(ret);
return tmp;
}
else
{
return ret;
}
}
/* ----------------------------------------------------------------------
* Memory functions
*/
void ec_point_free(struct ec_point *point)
{
if (point == NULL) return;
point->curve = 0;
if (point->x) freebn(point->x);
if (point->y) freebn(point->y);
if (point->z) freebn(point->z);
point->infinity = 0;
sfree(point);
}
static struct ec_point *ec_point_new(const struct ec_curve *curve,
const Bignum x, const Bignum y, const Bignum z,
unsigned char infinity)
{
struct ec_point *point = snewn(1, struct ec_point);
point->curve = curve;
point->x = x;
point->y = y;
point->z = z;
point->infinity = infinity ? 1 : 0;
return point;
}
static struct ec_point *ec_point_copy(const struct ec_point *a)
{
if (a == NULL) return NULL;
return ec_point_new(a->curve,
a->x ? copybn(a->x) : NULL,
a->y ? copybn(a->y) : NULL,
a->z ? copybn(a->z) : NULL,
a->infinity);
}
static int ec_point_verify(const struct ec_point *a)
{
if (a->infinity)
{
return 1;
}
else
{
/* Verify y^2 = x^3 + ax + b */
int ret = 0;
Bignum lhs = NULL, x3 = NULL, ax = NULL, x3ax = NULL, x3axm = NULL, x3axb = NULL, rhs = NULL;
Bignum Three = bignum_from_long(3);
if (!Three) return 0;
lhs = modmul(a->y, a->y, a->curve->p);
if (!lhs) goto error;
/* This uses montgomery multiplication to optimise */
x3 = modpow(a->x, Three, a->curve->p);
freebn(Three);
if (!x3) goto error;
ax = modmul(a->curve->a, a->x, a->curve->p);
if (!ax) goto error;
x3ax = bigadd(x3, ax);
if (!x3ax) goto error;
freebn(x3); x3 = NULL;
freebn(ax); ax = NULL;
x3axm = bigmod(x3ax, a->curve->p);
if (!x3axm) goto error;
freebn(x3ax); x3ax = NULL;
x3axb = bigadd(x3axm, a->curve->b);
if (!x3axb) goto error;
freebn(x3axm); x3axm = NULL;
rhs = bigmod(x3axb, a->curve->p);
if (!rhs) goto error;
freebn(x3axb);
ret = bignum_cmp(lhs, rhs) ? 0 : 1;
freebn(lhs);
freebn(rhs);
return ret;
error:
if (x3) freebn(x3);
if (ax) freebn(ax);
if (x3ax) freebn(x3ax);
if (x3axm) freebn(x3axm);
if (x3axb) freebn(x3axb);
if (lhs) freebn(lhs);
return 0;
}
}
/* ----------------------------------------------------------------------
* Elliptic curve point maths
*/
/* Returns 1 on success and 0 on memory error */
static int ecp_normalise(struct ec_point *a)
{
Bignum Z2, Z2inv, Z3, Z3inv, tx, ty;
/* In Jacobian Coordinates the triple (X, Y, Z) represents
the affine point (X / Z^2, Y / Z^3) */
if (!a) {
/* No point */
return 0;
}
if (a->infinity) {
/* Point is at infinity - i.e. normalised */
return 1;
} else if (!a->x || !a->y) {
/* No point defined */
return 0;
} else if (!a->z) {
/* Already normalised */
return 1;
}
Z2 = ecf_square(a->z, a->curve);
if (!Z2) {
return 0;
}
Z2inv = modinv(Z2, a->curve->p);
if (!Z2inv) {
freebn(Z2);
return 0;
}
tx = modmul(a->x, Z2inv, a->curve->p);
freebn(Z2inv);
if (!tx) {
freebn(Z2);
return 0;
}
Z3 = modmul(Z2, a->z, a->curve->p);
freebn(Z2);
if (!Z3) {
freebn(tx);
return 0;
}
Z3inv = modinv(Z3, a->curve->p);
freebn(Z3);
if (!Z3inv) {
freebn(tx);
return 0;
}
ty = modmul(a->y, Z3inv, a->curve->p);
freebn(Z3inv);
if (!ty) {
freebn(tx);
return 0;
}
freebn(a->x);
a->x = tx;
freebn(a->y);
a->y = ty;
freebn(a->z);
a->z = NULL;
return 1;
}
static struct ec_point *ecp_double(const struct ec_point *a, const int aminus3)
{
Bignum S, M, outx, outy, outz;
if (a->infinity || bignum_cmp(a->y, Zero) == 0)
{
/* Identity */
return ec_point_new(a->curve, NULL, NULL, NULL, 1);
}
/* S = 4*X*Y^2 */
{
Bignum Y2, XY2, _2XY2;
Y2 = ecf_square(a->y, a->curve);
if (!Y2) {
return NULL;
}
XY2 = modmul(a->x, Y2, a->curve->p);
freebn(Y2);
if (!XY2) {
return NULL;
}
_2XY2 = ecf_double(XY2, a->curve);
freebn(XY2);
if (!_2XY2) {
return NULL;
}
S = ecf_double(_2XY2, a->curve);
freebn(_2XY2);
if (!S) {
return NULL;
}
}
/* Faster calculation if a = -3 */
if (aminus3) {
/* if a = -3, then M can also be calculated as M = 3*(X + Z^2)*(X - Z^2) */
Bignum Z2, XpZ2, XmZ2, second;
if (a->z == NULL) {
Z2 = copybn(One);
} else {
Z2 = ecf_square(a->z, a->curve);
}
if (!Z2) {
freebn(S);
return NULL;
}
XpZ2 = ecf_add(a->x, Z2, a->curve);
if (!XpZ2) {
freebn(S);
freebn(Z2);
return NULL;
}
XmZ2 = modsub(a->x, Z2, a->curve->p);
freebn(Z2);
if (!XmZ2) {
freebn(S);
freebn(XpZ2);
return NULL;
}
second = modmul(XpZ2, XmZ2, a->curve->p);
freebn(XpZ2);
freebn(XmZ2);
if (!second) {
freebn(S);
return NULL;
}
M = ecf_treble(second, a->curve);
freebn(second);
if (!M) {
freebn(S);
return NULL;
}
} else {
/* M = 3*X^2 + a*Z^4 */
Bignum _3X2, X2, aZ4;
if (a->z == NULL) {
aZ4 = copybn(a->curve->a);
} else {
Bignum Z2, Z4;
Z2 = ecf_square(a->z, a->curve);
if (!Z2) {
freebn(S);
return NULL;
}
Z4 = ecf_square(Z2, a->curve);
freebn(Z2);
if (!Z4) {
freebn(S);
return NULL;
}
aZ4 = modmul(a->curve->a, Z4, a->curve->p);
freebn(Z4);
}
if (!aZ4) {
freebn(S);
return NULL;
}
X2 = modmul(a->x, a->x, a->curve->p);
if (!X2) {
freebn(S);
freebn(aZ4);
return NULL;
}
_3X2 = ecf_treble(X2, a->curve);
freebn(X2);
if (!_3X2) {
freebn(S);
freebn(aZ4);
return NULL;
}
M = ecf_add(_3X2, aZ4, a->curve);
freebn(_3X2);
freebn(aZ4);
if (!M) {
freebn(S);
return NULL;
}
}
/* X' = M^2 - 2*S */
{
Bignum M2, _2S;
M2 = ecf_square(M, a->curve);
if (!M2) {
freebn(S);
freebn(M);
return NULL;
}
_2S = ecf_double(S, a->curve);
if (!_2S) {
freebn(M2);
freebn(S);
freebn(M);
return NULL;
}
outx = modsub(M2, _2S, a->curve->p);
freebn(M2);
freebn(_2S);
if (!outx) {
freebn(S);
freebn(M);
return NULL;
}
}
/* Y' = M*(S - X') - 8*Y^4 */
{
Bignum SX, MSX, Eight, Y2, Y4, _8Y4;
SX = modsub(S, outx, a->curve->p);
freebn(S);
if (!SX) {
freebn(M);
freebn(outx);
return NULL;
}
MSX = modmul(M, SX, a->curve->p);
freebn(SX);
freebn(M);
if (!MSX) {
freebn(outx);
return NULL;
}
Y2 = ecf_square(a->y, a->curve);
if (!Y2) {
freebn(outx);
freebn(MSX);
return NULL;
}
Y4 = ecf_square(Y2, a->curve);
freebn(Y2);
if (!Y4) {
freebn(outx);
freebn(MSX);
return NULL;
}
Eight = bignum_from_long(8);
if (!Eight) {
freebn(outx);
freebn(MSX);
freebn(Y4);
return NULL;
}
_8Y4 = modmul(Eight, Y4, a->curve->p);
freebn(Eight);
freebn(Y4);
if (!_8Y4) {
freebn(outx);
freebn(MSX);
return NULL;
}
outy = modsub(MSX, _8Y4, a->curve->p);
freebn(MSX);
freebn(_8Y4);
if (!outy) {
freebn(outx);
return NULL;
}
}
/* Z' = 2*Y*Z */
{
Bignum YZ;
if (a->z == NULL) {
YZ = copybn(a->y);
} else {
YZ = modmul(a->y, a->z, a->curve->p);
}
if (!YZ) {
freebn(outx);
freebn(outy);
return NULL;
}
outz = ecf_double(YZ, a->curve);
freebn(YZ);
if (!outz) {
freebn(outx);
freebn(outy);
return NULL;
}
}
return ec_point_new(a->curve, outx, outy, outz, 0);
}
static struct ec_point *ecp_add(const struct ec_point *a,
const struct ec_point *b,
const int aminus3)
{
Bignum U1, U2, S1, S2, outx, outy, outz;
/* Check if multiplying by infinity */
if (a->infinity) return ec_point_copy(b);
if (b->infinity) return ec_point_copy(a);
/* U1 = X1*Z2^2 */
/* S1 = Y1*Z2^3 */
if (b->z) {
Bignum Z2, Z3;
Z2 = ecf_square(b->z, a->curve);
if (!Z2) {
return NULL;
}
U1 = modmul(a->x, Z2, a->curve->p);
if (!U1) {
freebn(Z2);
return NULL;
}
Z3 = modmul(Z2, b->z, a->curve->p);
freebn(Z2);
if (!Z3) {
freebn(U1);
return NULL;
}
S1 = modmul(a->y, Z3, a->curve->p);
freebn(Z3);
if (!S1) {
freebn(U1);
return NULL;
}
} else {
U1 = copybn(a->x);
if (!U1) {
return NULL;
}
S1 = copybn(a->y);
if (!S1) {
freebn(U1);
return NULL;
}
}
/* U2 = X2*Z1^2 */
/* S2 = Y2*Z1^3 */
if (a->z) {
Bignum Z2, Z3;
Z2 = ecf_square(a->z, b->curve);
if (!Z2) {
freebn(U1);
freebn(S1);
return NULL;
}
U2 = modmul(b->x, Z2, b->curve->p);
if (!U2) {
freebn(U1);
freebn(S1);
freebn(Z2);
return NULL;
}
Z3 = modmul(Z2, a->z, b->curve->p);
freebn(Z2);
if (!Z3) {
freebn(U1);
freebn(S1);
freebn(U2);
return NULL;
}
S2 = modmul(b->y, Z3, b->curve->p);
freebn(Z3);
if (!S2) {
freebn(U1);
freebn(S1);
freebn(U2);
return NULL;
}
} else {
U2 = copybn(b->x);
if (!U2) {
freebn(U1);
freebn(S1);
return NULL;
}
S2 = copybn(b->y);
if (!S2) {
freebn(U1);
freebn(S1);
freebn(U2);
return NULL;
}
}
/* Check if multiplying by self */
if (bignum_cmp(U1, U2) == 0)
{
freebn(U1);
freebn(U2);
if (bignum_cmp(S1, S2) == 0)
{
freebn(S1);
freebn(S2);
return ecp_double(a, aminus3);
}
else
{
freebn(S1);
freebn(S2);
/* Infinity */
return ec_point_new(a->curve, NULL, NULL, NULL, 1);
}
}
{
Bignum H, R, UH2, H3;
/* H = U2 - U1 */
H = modsub(U2, U1, a->curve->p);
freebn(U2);
if (!H) {
freebn(U1);
freebn(S1);
freebn(S2);
return NULL;
}
/* R = S2 - S1 */
R = modsub(S2, S1, a->curve->p);
freebn(S2);
if (!R) {
freebn(H);
freebn(S1);
freebn(U1);
return NULL;
}
/* X3 = R^2 - H^3 - 2*U1*H^2 */
{
Bignum R2, H2, _2UH2, first;
H2 = ecf_square(H, a->curve);
if (!H2) {
freebn(U1);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
UH2 = modmul(U1, H2, a->curve->p);
freebn(U1);
if (!UH2) {
freebn(H2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
H3 = modmul(H2, H, a->curve->p);
freebn(H2);
if (!H3) {
freebn(UH2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
R2 = ecf_square(R, a->curve);
if (!R2) {
freebn(H3);
freebn(UH2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
_2UH2 = ecf_double(UH2, a->curve);
if (!_2UH2) {
freebn(R2);
freebn(H3);
freebn(UH2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
first = modsub(R2, H3, a->curve->p);
freebn(R2);
if (!first) {
freebn(H3);
freebn(_2UH2);
freebn(UH2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
outx = modsub(first, _2UH2, a->curve->p);
freebn(first);
freebn(_2UH2);
if (!outx) {
freebn(H3);
freebn(UH2);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
}
/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
{
Bignum RUH2mX, UH2mX, SH3;
UH2mX = modsub(UH2, outx, a->curve->p);
freebn(UH2);
if (!UH2mX) {
freebn(outx);
freebn(H3);
freebn(S1);
freebn(H);
freebn(R);
return NULL;
}
RUH2mX = modmul(R, UH2mX, a->curve->p);
freebn(UH2mX);
freebn(R);
if (!RUH2mX) {
freebn(outx);
freebn(H3);
freebn(S1);
freebn(H);
return NULL;
}
SH3 = modmul(S1, H3, a->curve->p);
freebn(S1);
freebn(H3);
if (!SH3) {
freebn(RUH2mX);
freebn(outx);
freebn(H);
return NULL;
}
outy = modsub(RUH2mX, SH3, a->curve->p);
freebn(RUH2mX);
freebn(SH3);
if (!outy) {
freebn(outx);
freebn(H);
return NULL;
}
}
/* Z3 = H*Z1*Z2 */
if (a->z && b->z) {
Bignum ZZ;
ZZ = modmul(a->z, b->z, a->curve->p);
if (!ZZ) {
freebn(outx);
freebn(outy);
freebn(H);
return NULL;
}
outz = modmul(H, ZZ, a->curve->p);
freebn(H);
freebn(ZZ);
if (!outz) {
freebn(outx);
freebn(outy);
return NULL;
}
} else if (a->z) {
outz = modmul(H, a->z, a->curve->p);
freebn(H);
if (!outz) {
freebn(outx);
freebn(outy);
return NULL;
}
} else if (b->z) {
outz = modmul(H, b->z, a->curve->p);
freebn(H);
if (!outz) {
freebn(outx);
freebn(outy);
return NULL;
}
} else {
outz = H;
}
}
return ec_point_new(a->curve, outx, outy, outz, 0);
}
static struct ec_point *ecp_mul_(const struct ec_point *a, const Bignum b, int aminus3)
{
struct ec_point *A, *ret;
int bits, i;
A = ec_point_copy(a);
ret = ec_point_new(a->curve, NULL, NULL, NULL, 1);
bits = bignum_bitcount(b);
for (i = 0; ret != NULL && A != NULL && i < bits; ++i)
{
if (bignum_bit(b, i))
{
struct ec_point *tmp = ecp_add(ret, A, aminus3);
ec_point_free(ret);
ret = tmp;
}
if (i+1 != bits)
{
struct ec_point *tmp = ecp_double(A, aminus3);
ec_point_free(A);
A = tmp;
}
}
if (!A) {
ec_point_free(ret);
ret = NULL;
} else {
ec_point_free(A);
}
return ret;
}
/* Not static because it is used by sshecdsag.c to generate a new key */
struct ec_point *ecp_mul(const struct ec_point *a, const Bignum b)
{
struct ec_point *ret = ecp_mul_(a, b, ec_aminus3(a->curve));
if (!ecp_normalise(ret)) {
ec_point_free(ret);
return NULL;
}
return ret;
}
static struct ec_point *ecp_summul(const Bignum a, const Bignum b,
const struct ec_point *point)
{
struct ec_point *aG, *bP, *ret;
int aminus3 = ec_aminus3(point->curve);
aG = ecp_mul_(&point->curve->G, a, aminus3);
if (!aG) return NULL;
bP = ecp_mul_(point, b, aminus3);
if (!bP) {
ec_point_free(aG);
return NULL;
}
ret = ecp_add(aG, bP, aminus3);
ec_point_free(aG);
ec_point_free(bP);
if (!ecp_normalise(ret)) {
ec_point_free(ret);
return NULL;
}
return ret;
}
/* ----------------------------------------------------------------------
* Basic sign and verify routines
*/
static int _ecdsa_verify(const struct ec_point *publicKey,
const unsigned char *data, const int dataLen,
const Bignum r, const Bignum s)
{
int z_bits, n_bits;
Bignum z;
int valid = 0;
/* Sanity checks */
if (bignum_cmp(r, Zero) == 0 || bignum_cmp(r, publicKey->curve->n) >= 0
|| bignum_cmp(s, Zero) == 0 || bignum_cmp(s, publicKey->curve->n) >= 0)
{
return 0;
}
/* z = left most bitlen(curve->n) of data */
z = bignum_from_bytes(data, dataLen);
if (!z) return 0;
n_bits = bignum_bitcount(publicKey->curve->n);
z_bits = bignum_bitcount(z);
if (z_bits > n_bits)
{
Bignum tmp = bignum_rshift(z, z_bits - n_bits);
freebn(z);
z = tmp;
if (!z) return 0;
}
/* Ensure z in range of n */
{
Bignum tmp = bigmod(z, publicKey->curve->n);
freebn(z);
z = tmp;
if (!z) return 0;
}
/* Calculate signature */
{
Bignum w, x, u1, u2;
struct ec_point *tmp;
w = modinv(s, publicKey->curve->n);
if (!w) {
freebn(z);
return 0;
}
u1 = modmul(z, w, publicKey->curve->n);
if (!u1) {
freebn(z);
freebn(w);
return 0;
}
u2 = modmul(r, w, publicKey->curve->n);
freebn(w);
if (!u2) {
freebn(z);
freebn(u1);
return 0;
}
tmp = ecp_summul(u1, u2, publicKey);
freebn(u1);
freebn(u2);
if (!tmp) {
freebn(z);
return 0;
}
x = bigmod(tmp->x, publicKey->curve->n);
ec_point_free(tmp);
if (!x) {
freebn(z);
return 0;
}
valid = (bignum_cmp(r, x) == 0) ? 1 : 0;
freebn(x);
}
freebn(z);
return valid;
}
static void _ecdsa_sign(const Bignum privateKey, const struct ec_curve *curve,
const unsigned char *data, const int dataLen,
Bignum *r, Bignum *s)
{
unsigned char digest[20];
int z_bits, n_bits;
Bignum z, k;
struct ec_point *kG;
*r = NULL;
*s = NULL;
/* z = left most bitlen(curve->n) of data */
z = bignum_from_bytes(data, dataLen);
if (!z) return;
n_bits = bignum_bitcount(curve->n);
z_bits = bignum_bitcount(z);
if (z_bits > n_bits)
{
Bignum tmp;
tmp = bignum_rshift(z, z_bits - n_bits);
freebn(z);
z = tmp;
if (!z) return;
}
/* Generate k between 1 and curve->n, using the same deterministic
* k generation system we use for conventional DSA. */
SHA_Simple(data, dataLen, digest);
k = dss_gen_k("ECDSA deterministic k generator", curve->n, privateKey,
digest, sizeof(digest));
if (!k) return;
kG = ecp_mul(&curve->G, k);
if (!kG) {
freebn(z);
freebn(k);
return;
}
/* r = kG.x mod n */
*r = bigmod(kG->x, curve->n);
ec_point_free(kG);
if (!*r) {
freebn(z);
freebn(k);
return;
}
/* s = (z + r * priv)/k mod n */
{
Bignum rPriv, zMod, first, firstMod, kInv;
rPriv = modmul(*r, privateKey, curve->n);
if (!rPriv) {
freebn(*r);
freebn(z);
freebn(k);
return;
}
zMod = bigmod(z, curve->n);
freebn(z);
if (!zMod) {
freebn(rPriv);
freebn(*r);
freebn(k);
return;
}
first = bigadd(rPriv, zMod);
freebn(rPriv);
freebn(zMod);
if (!first) {
freebn(*r);
freebn(k);
return;
}
firstMod = bigmod(first, curve->n);
freebn(first);
if (!firstMod) {
freebn(*r);
freebn(k);
return;
}
kInv = modinv(k, curve->n);
freebn(k);
if (!kInv) {
freebn(firstMod);
freebn(*r);
return;
}
*s = modmul(firstMod, kInv, curve->n);
freebn(firstMod);
freebn(kInv);
if (!*s) {
freebn(*r);
return;
}
}
}
/* ----------------------------------------------------------------------
* Misc functions
*/
static void getstring(char **data, int *datalen, char **p, int *length)
{
*p = NULL;
if (*datalen < 4)
return;
*length = toint(GET_32BIT(*data));
if (*length < 0)
return;
*datalen -= 4;
*data += 4;
if (*datalen < *length)
return;
*p = *data;
*data += *length;
*datalen -= *length;
}
static Bignum getmp(char **data, int *datalen)
{
char *p;
int length;
getstring(data, datalen, &p, &length);
if (!p)
return NULL;
if (p[0] & 0x80)
return NULL; /* negative mp */
return bignum_from_bytes((unsigned char *)p, length);
}
static int decodepoint(char *p, int length, struct ec_point *point)
{
if (length < 1 || p[0] != 0x04) /* Only support uncompressed point */
return 0;
/* Skip compression flag */
++p;
--length;
/* The two values must be equal length */
if (length % 2 != 0) {
point->x = NULL;
point->y = NULL;
point->z = NULL;
return 0;
}
length = length / 2;
point->x = bignum_from_bytes((unsigned char *)p, length);
if (!point->x) return 0;
p += length;
point->y = bignum_from_bytes((unsigned char *)p, length);
if (!point->y) {
freebn(point->x);
point->x = NULL;
return 0;
}
point->z = NULL;
/* Verify the point is on the curve */
if (!ec_point_verify(point)) {
freebn(point->x);
point->x = NULL;
freebn(point->y);
point->y = NULL;
return 0;
}
return 1;
}
static int getmppoint(char **data, int *datalen, struct ec_point *point)
{
char *p;
int length;
getstring(data, datalen, &p, &length);
if (!p) return 0;
return decodepoint(p, length, point);
}
/* ----------------------------------------------------------------------
* Exposed ECDSA interface
*/
static void ecdsa_freekey(void *key)
{
struct ec_key *ec = (struct ec_key *) key;
if (!ec) return;
if (ec->publicKey.x)
freebn(ec->publicKey.x);
if (ec->publicKey.y)
freebn(ec->publicKey.y);
if (ec->publicKey.z)
freebn(ec->publicKey.z);
if (ec->privateKey)
freebn(ec->privateKey);
sfree(ec);
}
static void *ecdsa_newkey(char *data, int len)
{
char *p;
int slen;
struct ec_key *ec;
struct ec_curve *curve;
getstring(&data, &len, &p, &slen);
if (!p || slen < 11 || memcmp(p, "ecdsa-sha2-", 11)) {
return NULL;
}
curve = ec_name_to_curve(p+11, slen-11);
if (!curve) return NULL;
getstring(&data, &len, &p, &slen);
if (curve != ec_name_to_curve(p, slen)) return NULL;
ec = snew(struct ec_key);
ec->publicKey.curve = curve;
ec->publicKey.infinity = 0;
ec->publicKey.x = NULL;
ec->publicKey.y = NULL;
ec->publicKey.z = NULL;
if (!getmppoint(&data, &len, &ec->publicKey)) {
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = NULL;
if (!ec->publicKey.x || !ec->publicKey.y ||
bignum_cmp(ec->publicKey.x, curve->p) >= 0 ||
bignum_cmp(ec->publicKey.y, curve->p) >= 0)
{
ecdsa_freekey(ec);
ec = NULL;
}
return ec;
}
static char *ecdsa_fmtkey(void *key)
{
struct ec_key *ec = (struct ec_key *) key;
char *p;
int len, i, pos, nibbles;
static const char hex[] = "0123456789abcdef";
if (!ec->publicKey.x || !ec->publicKey.y || !ec->publicKey.curve)
return NULL;
pos = ec_curve_to_name(ec->publicKey.curve, NULL, 0);
if (pos == 0) return NULL;
len = 4 + 2 + 1; /* 2 x "0x", punctuation, \0 */
len += pos; /* Curve name */
len += 4 * (bignum_bitcount(ec->publicKey.x) + 15) / 16;
len += 4 * (bignum_bitcount(ec->publicKey.y) + 15) / 16;
p = snewn(len, char);
pos = ec_curve_to_name(ec->publicKey.curve, (unsigned char*)p, pos);
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(ec->publicKey.x)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;) {
p[pos++] =
hex[(bignum_byte(ec->publicKey.x, i / 2) >> (4 * (i % 2))) & 0xF];
}
pos += sprintf(p + pos, ",0x");
nibbles = (3 + bignum_bitcount(ec->publicKey.y)) / 4;
if (nibbles < 1)
nibbles = 1;
for (i = nibbles; i--;) {
p[pos++] =
hex[(bignum_byte(ec->publicKey.y, i / 2) >> (4 * (i % 2))) & 0xF];
}
p[pos] = '\0';
return p;
}
static unsigned char *ecdsa_public_blob(void *key, int *len)
{
struct ec_key *ec = (struct ec_key *) key;
int pointlen, bloblen, namelen;
int i;
unsigned char *blob, *p;
namelen = ec_curve_to_name(ec->publicKey.curve, NULL, 0);
if (namelen == 0) return NULL;
pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
/*
* string "ecdsa-sha2-<name>", string "<name>", 0x04 point x, y.
*/
bloblen = 4 + 11 + namelen + 4 + namelen + 4 + 1 + (pointlen * 2);
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, 11 + namelen);
p += 4;
memcpy(p, "ecdsa-sha2-", 11);
p += 11;
p += ec_curve_to_name(ec->publicKey.curve, p, namelen);
PUT_32BIT(p, namelen);
p += 4;
p += ec_curve_to_name(ec->publicKey.curve, p, namelen);
PUT_32BIT(p, (2 * pointlen) + 1);
p += 4;
*p++ = 0x04;
for (i = pointlen; i--;)
*p++ = bignum_byte(ec->publicKey.x, i);
for (i = pointlen; i--;)
*p++ = bignum_byte(ec->publicKey.y, i);
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static unsigned char *ecdsa_private_blob(void *key, int *len)
{
struct ec_key *ec = (struct ec_key *) key;
int keylen, bloblen;
int i;
unsigned char *blob, *p;
if (!ec->privateKey) return NULL;
keylen = (bignum_bitcount(ec->privateKey) + 8) / 8;
/*
* mpint privateKey. Total 4 + keylen.
*/
bloblen = 4 + keylen;
blob = snewn(bloblen, unsigned char);
p = blob;
PUT_32BIT(p, keylen);
p += 4;
for (i = keylen; i--;)
*p++ = bignum_byte(ec->privateKey, i);
assert(p == blob + bloblen);
*len = bloblen;
return blob;
}
static void *ecdsa_createkey(unsigned char *pub_blob, int pub_len,
unsigned char *priv_blob, int priv_len)
{
struct ec_key *ec;
struct ec_point *publicKey;
char *pb = (char *) priv_blob;
ec = (struct ec_key*)ecdsa_newkey((char *) pub_blob, pub_len);
if (!ec) {
return NULL;
}
ec->privateKey = getmp(&pb, &priv_len);
if (!ec->privateKey) {
ecdsa_freekey(ec);
return NULL;
}
/* Check that private key generates public key */
publicKey = ecp_mul(&ec->publicKey.curve->G, ec->privateKey);
if (!publicKey ||
bignum_cmp(publicKey->x, ec->publicKey.x) ||
bignum_cmp(publicKey->y, ec->publicKey.y))
{
ecdsa_freekey(ec);
ec = NULL;
}
ec_point_free(publicKey);
return ec;
}
static void *ecdsa_openssh_createkey(unsigned char **blob, int *len)
{
char **b = (char **) blob;
char *p;
int slen;
struct ec_key *ec;
struct ec_curve *curve;
struct ec_point *publicKey;
getstring(b, len, &p, &slen);
if (!p) {
return NULL;
}
curve = ec_name_to_curve(p, slen);
if (!curve) return NULL;
ec = snew(struct ec_key);
ec->publicKey.curve = curve;
ec->publicKey.infinity = 0;
ec->publicKey.x = NULL;
ec->publicKey.y = NULL;
ec->publicKey.z = NULL;
if (!getmppoint(b, len, &ec->publicKey)) {
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = NULL;
if (!ec->publicKey.x || !ec->publicKey.y ||
bignum_cmp(ec->publicKey.x, curve->p) >= 0 ||
bignum_cmp(ec->publicKey.y, curve->p) >= 0)
{
ecdsa_freekey(ec);
return NULL;
}
ec->privateKey = getmp(b, len);
if (ec->privateKey == NULL)
{
ecdsa_freekey(ec);
return NULL;
}
/* Now check that the private key makes the public key */
publicKey = ecp_mul(&ec->publicKey.curve->G, ec->privateKey);
if (!publicKey)
{
ecdsa_freekey(ec);
return NULL;
}
if (bignum_cmp(ec->publicKey.x, publicKey->x) ||
bignum_cmp(ec->publicKey.y, publicKey->y))
{
/* Private key doesn't make the public key on the given curve */
ecdsa_freekey(ec);
ec_point_free(publicKey);
return NULL;
}
ec_point_free(publicKey);
return ec;
}
static int ecdsa_openssh_fmtkey(void *key, unsigned char *blob, int len)
{
struct ec_key *ec = (struct ec_key *) key;
int pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
int namelen = ec_curve_to_name(ec->publicKey.curve, NULL, 0);
int bloblen =
4 + namelen /* <LEN> nistpXXX */
+ 4 + 1 + (pointlen * 2) /* <LEN> 0x04 pX pY */
+ ssh2_bignum_length(ec->privateKey);
int i;
if (bloblen > len)
return bloblen;
bloblen = 0;
PUT_32BIT(blob+bloblen, namelen);
bloblen += 4;
bloblen += ec_curve_to_name(ec->publicKey.curve, blob+bloblen, namelen);
PUT_32BIT(blob+bloblen, 1 + (pointlen * 2));
bloblen += 4;
blob[bloblen++] = 0x04;
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->publicKey.x, i);
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->publicKey.y, i);
pointlen = (bignum_bitcount(ec->privateKey) + 8) / 8;
PUT_32BIT(blob+bloblen, pointlen);
bloblen += 4;
for (i = pointlen; i--; )
blob[bloblen++] = bignum_byte(ec->privateKey, i);
return bloblen;
}
static int ecdsa_pubkey_bits(void *blob, int len)
{
struct ec_key *ec;
int ret;
ec = (struct ec_key*)ecdsa_newkey((char *) blob, len);
if (!ec)
return -1;
ret = ec->publicKey.curve->fieldBits;
ecdsa_freekey(ec);
return ret;
}
static char *ecdsa_fingerprint(void *key)
{
struct ec_key *ec = (struct ec_key *) key;
struct MD5Context md5c;
unsigned char digest[16], lenbuf[4];
char *ret;
unsigned char *name;
int pointlen, namelen, i, j;
namelen = ec_curve_to_name(ec->publicKey.curve, NULL, 0);
name = snewn(namelen, unsigned char);
ec_curve_to_name(ec->publicKey.curve, name, namelen);
MD5Init(&md5c);
PUT_32BIT(lenbuf, namelen + 11);
MD5Update(&md5c, lenbuf, 4);
MD5Update(&md5c, (const unsigned char *)"ecdsa-sha2-", 11);
MD5Update(&md5c, name, namelen);
PUT_32BIT(lenbuf, namelen);
MD5Update(&md5c, lenbuf, 4);
MD5Update(&md5c, name, namelen);
pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
PUT_32BIT(lenbuf, 1 + (pointlen * 2));
MD5Update(&md5c, lenbuf, 4);
MD5Update(&md5c, (const unsigned char *)"\x04", 1);
for (i = pointlen; i--; ) {
unsigned char c = bignum_byte(ec->publicKey.x, i);
MD5Update(&md5c, &c, 1);
}
for (i = pointlen; i--; ) {
unsigned char c = bignum_byte(ec->publicKey.y, i);
MD5Update(&md5c, &c, 1);
}
MD5Final(digest, &md5c);
ret = snewn(11 + namelen + 1 + (16 * 3), char);
i = 11;
memcpy(ret, "ecdsa-sha2-", 11);
memcpy(ret+i, name, namelen);
i += namelen;
sfree(name);
ret[i++] = ' ';
for (j = 0; j < 16; j++)
i += sprintf(ret + i, "%s%02x", j ? ":" : "", digest[j]);
return ret;
}
static int ecdsa_verifysig(void *key, char *sig, int siglen,
char *data, int datalen)
{
struct ec_key *ec = (struct ec_key *) key;
char *p;
int slen;
unsigned char digest[512 / 8];
int digestLen;
Bignum r, s;
int ret;
if (!ec->publicKey.x || !ec->publicKey.y || !ec->publicKey.curve)
return 0;
/* Check the signature curve matches the key curve */
getstring(&sig, &siglen, &p, &slen);
if (!p || slen < 11 || memcmp(p, "ecdsa-sha2-", 11)) {
return 0;
}
if (ec->publicKey.curve != ec_name_to_curve(p+11, slen-11)) {
return 0;
}
getstring(&sig, &siglen, &p, &slen);
r = getmp(&p, &slen);
if (!r) return 0;
s = getmp(&p, &slen);
if (!s) {
freebn(r);
return 0;
}
/* Perform correct hash function depending on curve size */
if (ec->publicKey.curve->fieldBits <= 256) {
SHA256_Simple(data, datalen, digest);
digestLen = 256 / 8;
} else if (ec->publicKey.curve->fieldBits <= 384) {
SHA384_Simple(data, datalen, digest);
digestLen = 384 / 8;
} else {
SHA512_Simple(data, datalen, digest);
digestLen = 512 / 8;
}
/* Verify the signature */
if (!_ecdsa_verify(&ec->publicKey, digest, digestLen, r, s)) {
ret = 0;
} else {
ret = 1;
}
freebn(r);
freebn(s);
return ret;
}
static unsigned char *ecdsa_sign(void *key, char *data, int datalen,
int *siglen)
{
struct ec_key *ec = (struct ec_key *) key;
unsigned char digest[512 / 8];
int digestLen;
Bignum r = NULL, s = NULL;
unsigned char *buf, *p;
int rlen, slen, namelen;
int i;
if (!ec->privateKey || !ec->publicKey.curve) {
return NULL;
}
/* Perform correct hash function depending on curve size */
if (ec->publicKey.curve->fieldBits <= 256) {
SHA256_Simple(data, datalen, digest);
digestLen = 256 / 8;
} else if (ec->publicKey.curve->fieldBits <= 384) {
SHA384_Simple(data, datalen, digest);
digestLen = 384 / 8;
} else {
SHA512_Simple(data, datalen, digest);
digestLen = 512 / 8;
}
/* Do the signature */
_ecdsa_sign(ec->privateKey, ec->publicKey.curve, digest, digestLen, &r, &s);
if (!r || !s) {
if (r) freebn(r);
if (s) freebn(s);
return NULL;
}
rlen = (bignum_bitcount(r) + 8) / 8;
slen = (bignum_bitcount(s) + 8) / 8;
namelen = ec_curve_to_name(ec->publicKey.curve, NULL, 0);
/* Format the output */
*siglen = 8+11+namelen+rlen+slen+8;
buf = snewn(*siglen, unsigned char);
p = buf;
PUT_32BIT(p, 11+namelen);
p += 4;
memcpy(p, "ecdsa-sha2-", 11);
p += 11;
p += ec_curve_to_name(ec->publicKey.curve, p, namelen);
PUT_32BIT(p, rlen + slen + 8);
p += 4;
PUT_32BIT(p, rlen);
p += 4;
for (i = rlen; i--;)
*p++ = bignum_byte(r, i);
PUT_32BIT(p, slen);
p += 4;
for (i = slen; i--;)
*p++ = bignum_byte(s, i);
freebn(r);
freebn(s);
return buf;
}
const struct ssh_signkey ssh_ecdsa_nistp256 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
ecdsa_pubkey_bits,
ecdsa_fingerprint,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp256",
"ecdsa-sha2-nistp256",
};
const struct ssh_signkey ssh_ecdsa_nistp384 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
ecdsa_pubkey_bits,
ecdsa_fingerprint,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp384",
"ecdsa-sha2-nistp384",
};
const struct ssh_signkey ssh_ecdsa_nistp521 = {
ecdsa_newkey,
ecdsa_freekey,
ecdsa_fmtkey,
ecdsa_public_blob,
ecdsa_private_blob,
ecdsa_createkey,
ecdsa_openssh_createkey,
ecdsa_openssh_fmtkey,
ecdsa_pubkey_bits,
ecdsa_fingerprint,
ecdsa_verifysig,
ecdsa_sign,
"ecdsa-sha2-nistp521",
"ecdsa-sha2-nistp521",
};
/* ----------------------------------------------------------------------
* Exposed ECDH interface
*/
static Bignum ecdh_calculate(const Bignum private,
const struct ec_point *public)
{
struct ec_point *p;
Bignum ret;
p = ecp_mul(public, private);
if (!p) return NULL;
ret = p->x;
p->x = NULL;
ec_point_free(p);
return ret;
}
void *ssh_ecdhkex_newkey(struct ec_curve *curve)
{
struct ec_key *key = snew(struct ec_key);
struct ec_point *publicKey;
key->publicKey.curve = curve;
key->privateKey = bignum_random_in_range(One, key->publicKey.curve->n);
if (!key->privateKey) {
sfree(key);
return NULL;
}
publicKey = ecp_mul(&key->publicKey.curve->G, key->privateKey);
if (!publicKey) {
freebn(key->privateKey);
sfree(key);
return NULL;
}
key->publicKey.x = publicKey->x;
key->publicKey.y = publicKey->y;
key->publicKey.z = NULL;
sfree(publicKey);
return key;
}
char *ssh_ecdhkex_getpublic(void *key, int *len)
{
struct ec_key *ec = (struct ec_key*)key;
char *point, *p;
int i;
int pointlen = (bignum_bitcount(ec->publicKey.curve->p) + 7) / 8;
*len = 1 + pointlen * 2;
point = (char*)snewn(*len, char);
p = point;
*p++ = 0x04;
for (i = pointlen; i--;)
*p++ = bignum_byte(ec->publicKey.x, i);
for (i = pointlen; i--;)
*p++ = bignum_byte(ec->publicKey.y, i);
return point;
}
Bignum ssh_ecdhkex_getkey(void *key, char *remoteKey, int remoteKeyLen)
{
struct ec_key *ec = (struct ec_key*) key;
struct ec_point remote;
remote.curve = ec->publicKey.curve;
remote.infinity = 0;
if (!decodepoint(remoteKey, remoteKeyLen, &remote)) {
return NULL;
}
return ecdh_calculate(ec->privateKey, &remote);
}
void ssh_ecdhkex_freekey(void *key)
{
ecdsa_freekey(key);
}
static const struct ssh_kex ssh_ec_kex_nistp256 = {
"ecdh-sha2-nistp256", NULL, KEXTYPE_ECDH, NULL, NULL, 0, 0, &ssh_sha256
};
static const struct ssh_kex ssh_ec_kex_nistp384 = {
"ecdh-sha2-nistp384", NULL, KEXTYPE_ECDH, NULL, NULL, 0, 0, &ssh_sha384
};
static const struct ssh_kex ssh_ec_kex_nistp521 = {
"ecdh-sha2-nistp521", NULL, KEXTYPE_ECDH, NULL, NULL, 0, 0, &ssh_sha512
};
static const struct ssh_kex *const ec_kex_list[] = {
&ssh_ec_kex_nistp256,
&ssh_ec_kex_nistp384,
&ssh_ec_kex_nistp521
};
const struct ssh_kexes ssh_ecdh_kex = {
sizeof(ec_kex_list) / sizeof(*ec_kex_list),
ec_kex_list
};