2002-10-23 09:11:36 +00:00
|
|
|
/*
|
|
|
|
* Internals of the Terminal structure, for those other modules
|
|
|
|
* which need to look inside it. It would be nice if this could be
|
|
|
|
* folded back into terminal.c in future, with an abstraction layer
|
|
|
|
* to handle everything that other modules need to know about it;
|
|
|
|
* but for the moment, this will do.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef PUTTY_TERMINAL_H
|
|
|
|
#define PUTTY_TERMINAL_H
|
|
|
|
|
|
|
|
#include "tree234.h"
|
|
|
|
|
|
|
|
struct beeptime {
|
|
|
|
struct beeptime *next;
|
|
|
|
unsigned long ticks;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
int y, x;
|
|
|
|
} pos;
|
|
|
|
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
typedef struct termchar termchar;
|
|
|
|
typedef struct termline termline;
|
|
|
|
|
|
|
|
struct termchar {
|
2004-10-14 16:42:43 +00:00
|
|
|
/*
|
|
|
|
* Any code in terminal.c which definitely needs to be changed
|
|
|
|
* when extra fields are added here is labelled with a comment
|
|
|
|
* saying FULL-TERMCHAR.
|
|
|
|
*/
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
unsigned long chr;
|
|
|
|
unsigned long attr;
|
2017-09-30 16:32:32 +00:00
|
|
|
truecolour truecolour;
|
2004-10-14 16:42:43 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The cc_next field is used to link multiple termchars
|
|
|
|
* together into a list, so as to fit more than one character
|
|
|
|
* into a character cell (Unicode combining characters).
|
|
|
|
*
|
|
|
|
* cc_next is a relative offset into the current array of
|
|
|
|
* termchars. I.e. to advance to the next character in a list,
|
|
|
|
* one does `tc += tc->next'.
|
|
|
|
*
|
|
|
|
* Zero means end of list.
|
|
|
|
*/
|
|
|
|
int cc_next;
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct termline {
|
|
|
|
unsigned short lattr;
|
2004-10-14 16:42:43 +00:00
|
|
|
int cols; /* number of real columns on the line */
|
|
|
|
int size; /* number of allocated termchars
|
|
|
|
* (cc-lists may make this > cols) */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool temporary; /* true if decompressed from scrollback */
|
2004-10-14 16:42:43 +00:00
|
|
|
int cc_free; /* offset to first cc in free list */
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
struct termchar *chars;
|
|
|
|
};
|
|
|
|
|
2004-10-15 11:11:19 +00:00
|
|
|
struct bidi_cache_entry {
|
|
|
|
int width;
|
|
|
|
struct termchar *chars;
|
2004-11-28 09:24:57 +00:00
|
|
|
int *forward, *backward; /* the permutations of line positions */
|
2004-10-15 11:11:19 +00:00
|
|
|
};
|
|
|
|
|
2019-03-04 20:53:41 +00:00
|
|
|
struct term_utf8_decode {
|
|
|
|
int state; /* Is there a pending UTF-8 character */
|
|
|
|
int chr; /* and what is it so far? */
|
|
|
|
int size; /* The size of the UTF character. */
|
|
|
|
};
|
|
|
|
|
2002-10-23 09:11:36 +00:00
|
|
|
struct terminal_tag {
|
|
|
|
|
|
|
|
int compatibility_level;
|
|
|
|
|
|
|
|
tree234 *scrollback; /* lines scrolled off top of screen */
|
|
|
|
tree234 *screen; /* lines on primary screen */
|
|
|
|
tree234 *alt_screen; /* lines on alternate screen */
|
|
|
|
int disptop; /* distance scrolled back (0 or -ve) */
|
2006-02-19 14:10:02 +00:00
|
|
|
int tempsblines; /* number of lines of .scrollback that
|
|
|
|
can be retrieved onto the terminal
|
|
|
|
("temporary scrollback") */
|
2002-10-23 09:11:36 +00:00
|
|
|
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
termline **disptext; /* buffer of text on real screen */
|
|
|
|
int dispcursx, dispcursy; /* location of cursor on real screen */
|
|
|
|
int curstype; /* type of cursor on real screen */
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
#define VBELL_TIMEOUT (TICKSPERSEC/10) /* visual bell lasts 1/10 sec */
|
|
|
|
|
|
|
|
struct beeptime *beephead, *beeptail;
|
|
|
|
int nbeeps;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool beep_overloaded;
|
2002-10-23 09:11:36 +00:00
|
|
|
long lastbeep;
|
|
|
|
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
#define TTYPE termchar
|
2003-03-29 16:14:26 +00:00
|
|
|
#define TSIZE (sizeof(TTYPE))
|
2002-10-23 09:11:36 +00:00
|
|
|
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
int default_attr, curr_attr, save_attr;
|
2017-10-08 12:49:54 +00:00
|
|
|
truecolour curr_truecolour, save_truecolour;
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
termchar basic_erase_char, erase_char;
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
bufchain inbuf; /* terminal input buffer */
|
2019-03-05 21:05:35 +00:00
|
|
|
|
2002-10-23 09:11:36 +00:00
|
|
|
pos curs; /* cursor */
|
|
|
|
pos savecurs; /* saved cursor position */
|
|
|
|
int marg_t, marg_b; /* scroll margins */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool dec_om; /* DEC origin mode flag */
|
|
|
|
bool wrap, wrapnext; /* wrap flags */
|
|
|
|
bool insert; /* insert-mode flag */
|
2002-10-23 09:11:36 +00:00
|
|
|
int cset; /* 0 or 1: which char set */
|
|
|
|
int save_cset, save_csattr; /* saved with cursor position */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool save_utf, save_wnext; /* saved with cursor position */
|
|
|
|
bool rvideo; /* global reverse video flag */
|
2002-10-23 09:11:36 +00:00
|
|
|
unsigned long rvbell_startpoint; /* for ESC[?5hESC[?5l vbell */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool cursor_on; /* cursor enabled flag */
|
|
|
|
bool reset_132; /* Flag ESC c resets to 80 cols */
|
|
|
|
bool use_bce; /* Use Background coloured erase */
|
|
|
|
bool cblinker; /* When blinking is the cursor on ? */
|
|
|
|
bool tblinker; /* When the blinking text is on */
|
|
|
|
bool blink_is_real; /* Actually blink blinking text */
|
|
|
|
bool term_echoing; /* Does terminal want local echo? */
|
|
|
|
bool term_editing; /* Does terminal want local edit? */
|
2002-10-23 09:11:36 +00:00
|
|
|
int sco_acs, save_sco_acs; /* CSI 10,11,12m -> OEM charset */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool vt52_bold; /* Force bold on non-bold colours */
|
|
|
|
bool utf; /* Are we in toggleable UTF-8 mode? */
|
2019-03-04 20:53:41 +00:00
|
|
|
term_utf8_decode utf8; /* If so, here's our decoding state */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool printing, only_printing; /* Are we doing ANSI printing? */
|
2002-10-23 09:11:36 +00:00
|
|
|
int print_state; /* state of print-end-sequence scan */
|
|
|
|
bufchain printer_buf; /* buffered data for printer */
|
|
|
|
printer_job *print_job;
|
|
|
|
|
2006-08-15 22:48:01 +00:00
|
|
|
/* ESC 7 saved state for the alternate screen */
|
|
|
|
pos alt_savecurs;
|
|
|
|
int alt_save_attr;
|
2017-10-08 12:45:08 +00:00
|
|
|
truecolour alt_save_truecolour;
|
2006-08-15 22:48:01 +00:00
|
|
|
int alt_save_cset, alt_save_csattr;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool alt_save_utf;
|
|
|
|
bool alt_save_wnext;
|
2006-08-15 22:48:01 +00:00
|
|
|
int alt_save_sco_acs;
|
|
|
|
|
2002-10-23 09:11:36 +00:00
|
|
|
int rows, cols, savelines;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool has_focus;
|
|
|
|
bool in_vbell;
|
2004-11-27 13:20:21 +00:00
|
|
|
long vbell_end;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool app_cursor_keys, app_keypad_keys, vt52_mode;
|
|
|
|
bool repeat_off, cr_lf_return;
|
|
|
|
bool seen_disp_event;
|
|
|
|
bool big_cursor;
|
2002-10-23 09:11:36 +00:00
|
|
|
|
2008-12-20 18:52:09 +00:00
|
|
|
int xterm_mouse; /* send mouse messages to host */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool xterm_extended_mouse;
|
|
|
|
bool urxvt_extended_mouse;
|
2002-10-26 10:16:19 +00:00
|
|
|
int mouse_is_down; /* used while tracking mouse buttons */
|
2002-10-23 09:11:36 +00:00
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool bracketed_paste;
|
2012-02-19 10:27:18 +00:00
|
|
|
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
int cset_attr[2];
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Saved settings on the alternate screen.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
int alt_x, alt_y;
|
|
|
|
bool alt_wnext, alt_ins;
|
|
|
|
bool alt_om, alt_wrap;
|
|
|
|
int alt_cset, alt_sco_acs;
|
|
|
|
bool alt_utf;
|
2002-10-23 09:11:36 +00:00
|
|
|
int alt_t, alt_b;
|
|
|
|
int alt_which;
|
2003-03-06 12:51:12 +00:00
|
|
|
int alt_sblines; /* # of lines on alternate screen that should be used for scrollback. */
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
#define ARGS_MAX 32 /* max # of esc sequence arguments */
|
|
|
|
#define ARG_DEFAULT 0 /* if an arg isn't specified */
|
|
|
|
#define def(a,d) ( (a) == ARG_DEFAULT ? (d) : (a) )
|
2015-10-07 22:54:39 +00:00
|
|
|
unsigned esc_args[ARGS_MAX];
|
2002-10-23 09:11:36 +00:00
|
|
|
int esc_nargs;
|
|
|
|
int esc_query;
|
2019-02-06 20:52:45 +00:00
|
|
|
#define ANSI(x,y) ((x)+((y)*256))
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
#define ANSI_QUE(x) ANSI(x,1)
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
#define OSC_STR_MAX 2048
|
|
|
|
int osc_strlen;
|
|
|
|
char osc_string[OSC_STR_MAX + 1];
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool osc_w;
|
2002-10-23 09:11:36 +00:00
|
|
|
|
|
|
|
char id_string[1024];
|
|
|
|
|
|
|
|
unsigned char *tabs;
|
|
|
|
|
|
|
|
enum {
|
|
|
|
TOPLEVEL,
|
|
|
|
SEEN_ESC,
|
|
|
|
SEEN_CSI,
|
|
|
|
SEEN_OSC,
|
|
|
|
SEEN_OSC_W,
|
|
|
|
|
|
|
|
DO_CTRLS,
|
|
|
|
|
|
|
|
SEEN_OSC_P,
|
|
|
|
OSC_STRING, OSC_MAYBE_ST,
|
|
|
|
VT52_ESC,
|
|
|
|
VT52_Y1,
|
|
|
|
VT52_Y2,
|
|
|
|
VT52_FG,
|
|
|
|
VT52_BG
|
|
|
|
} termstate;
|
|
|
|
|
|
|
|
enum {
|
|
|
|
NO_SELECTION, ABOUT_TO, DRAGGING, SELECTED
|
|
|
|
} selstate;
|
|
|
|
enum {
|
|
|
|
LEXICOGRAPHIC, RECTANGULAR
|
|
|
|
} seltype;
|
|
|
|
enum {
|
|
|
|
SM_CHAR, SM_WORD, SM_LINE
|
|
|
|
} selmode;
|
|
|
|
pos selstart, selend, selanchor;
|
|
|
|
|
|
|
|
short wordness[256];
|
|
|
|
|
2002-11-29 00:32:03 +00:00
|
|
|
/* Mask of attributes to pay attention to when painting. */
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
int attr_mask;
|
2002-11-29 00:32:03 +00:00
|
|
|
|
2002-10-23 09:11:36 +00:00
|
|
|
wchar_t *paste_buffer;
|
2013-08-17 16:06:12 +00:00
|
|
|
int paste_len, paste_pos;
|
2002-10-25 11:30:33 +00:00
|
|
|
|
2018-09-11 15:23:38 +00:00
|
|
|
Backend *backend;
|
2002-10-26 10:16:19 +00:00
|
|
|
|
2018-09-11 14:02:59 +00:00
|
|
|
Ldisc *ldisc;
|
2002-10-26 12:58:13 +00:00
|
|
|
|
Remove the 'Frontend' type and replace it with a vtable.
After the recent Seat and LogContext revamps, _nearly_ all the
remaining uses of the type 'Frontend' were in terminal.c, which needs
all sorts of interactions with the GUI window the terminal lives in,
from the obvious (actually drawing text on the window, reading and
writing the clipboard) to the obscure (minimising, maximising and
moving the window in response to particular escape sequences).
All of those functions are now provided by an abstraction called
TermWin. The few remaining uses of Frontend after _that_ are internal
to a particular platform directory, so as to spread the implementation
of that particular kind of Frontend between multiple source files; so
I've renamed all of those so that they take a more specifically named
type that refers to the particular implementation rather than the
general abstraction.
So now the name 'Frontend' no longer exists in the code base at all,
and everywhere one used to be used, it's completely clear whether it
was operating in one of Frontend's three abstract roles (and if so,
which), or whether it was specific to a particular implementation.
Another type that's disappeared is 'Context', which used to be a
typedef defined to something different on each platform, describing
whatever short-lived resources were necessary to draw on the terminal
window: the front end would provide a ready-made one when calling
term_paint, and the terminal could request one with get_ctx/free_ctx
if it wanted to do proactive window updates. Now that drawing context
lives inside the TermWin itself, because there was never any need to
have two of those contexts live at the same time.
(Another minor API change is that the window-title functions - both
reading and writing - have had a missing 'const' added to their char *
parameters / return values.)
I don't expect this change to enable any particularly interesting new
functionality (in particular, I have no plans that need more than one
implementation of TermWin in the same application). But it completes
the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
|
|
|
TermWin *win;
|
2002-10-26 12:58:13 +00:00
|
|
|
|
2018-09-11 14:17:16 +00:00
|
|
|
LogContext *logctx;
|
2002-11-23 19:01:01 +00:00
|
|
|
|
2003-01-14 18:28:23 +00:00
|
|
|
struct unicode_data *ucsdata;
|
|
|
|
|
2018-05-18 13:17:06 +00:00
|
|
|
unsigned long last_graphic_char;
|
|
|
|
|
2003-01-12 14:30:02 +00:00
|
|
|
/*
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
* We maintain a full copy of a Conf here, not merely a pointer
|
|
|
|
* to it. That way, when we're passed a new one for
|
|
|
|
* reconfiguration, we can check the differences and adjust the
|
|
|
|
* _current_ setting of (e.g.) auto wrap mode rather than only
|
|
|
|
* the default.
|
2003-01-12 14:30:02 +00:00
|
|
|
*/
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
Conf *conf;
|
2003-03-29 18:30:14 +00:00
|
|
|
|
|
|
|
/*
|
New abstraction 'Seat', to pass to backends.
This is a new vtable-based abstraction which is passed to a backend in
place of Frontend, and it implements only the subset of the Frontend
functions needed by a backend. (Many other Frontend functions still
exist, notably the wide range of things called by terminal.c providing
platform-independent operations on the GUI terminal window.)
The purpose of making it a vtable is that this opens up the
possibility of creating a backend as an internal implementation detail
of some other activity, by providing just that one backend with a
custom Seat that implements the methods differently.
For example, this refactoring should make it feasible to directly
implement an SSH proxy type, aka the 'jump host' feature supported by
OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP
mode, and then expose the main channel of that as the Socket for the
primary connection'. (Which of course you can already do by spawning
'plink -nc' as a separate proxy process, but this would permit it in
the _same_ process without anything getting confused.)
I've centralised a full set of stub methods in misc.c for the new
abstraction, which allows me to get rid of several annoying stubs in
the previous code. Also, while I'm here, I've moved a lot of
duplicated modalfatalbox() type functions from application main
program files into wincons.c / uxcons.c, which I think saves
duplication overall. (A minor visible effect is that the prefixes on
those console-based fatal error messages will now be more consistent
between applications.)
2018-10-11 18:58:42 +00:00
|
|
|
* GUI implementations of seat_output call term_out, but it can
|
|
|
|
* also be called from the ldisc if the ldisc is called _within_
|
|
|
|
* term_out. So we have to guard against re-entrancy - if
|
|
|
|
* seat_output is called recursively like this, it will simply add
|
|
|
|
* data to the end of the buffer term_out is in the process of
|
|
|
|
* working through.
|
2003-03-29 18:30:14 +00:00
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool in_term_out;
|
2004-05-22 10:36:50 +00:00
|
|
|
|
2004-11-27 13:20:21 +00:00
|
|
|
/*
|
|
|
|
* We schedule a window update shortly after receiving terminal
|
|
|
|
* data. This tracks whether one is currently pending.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool window_update_pending;
|
2004-11-27 13:20:21 +00:00
|
|
|
long next_update;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Track pending blinks and tblinks.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool tblink_pending, cblink_pending;
|
2004-11-27 13:20:21 +00:00
|
|
|
long next_tblink, next_cblink;
|
|
|
|
|
2004-05-22 10:36:50 +00:00
|
|
|
/*
|
|
|
|
* These are buffers used by the bidi and Arabic shaping code.
|
|
|
|
*/
|
Re-engineering of terminal emulator, phase 1.
The active terminal screen is no longer an array of `unsigned long'
encoding 16-bit Unicode plus 16 attribute bits. Now it's an array of
`termchar' structures, which currently have 32-bit Unicode and 32
attribute bits but which will probably expand further in future.
To prevent bloat of the memory footprint, I've introduced a mostly
RLE-like compression scheme for storing scrollback: each line is
compressed into a compact (but hard to modify) form when it moves
into the term->scrollback tree, and is temporarily decompressed when
the user wants to scroll back over it. My initial tests suggest that
this compression averages about 1/4 of the previous (32 bits per
character cell) data size in typical output, which means this is an
improvement even without counting the new ability to extend the
information stored in each character cell.
Another beneficial side effect is that the insane format in which
Unicode was passed to front ends through do_text() has now been
rendered sane.
Testing is incomplete; this _may_ still have instabilities. Windows
and Unix front ends both seem to work as far as I've looked, but I
haven't yet looked very hard. The Mac front end I've edited (it
seemed obvious how to change it) but I can't compile or test it.
As an immediate functional effect, the terminal emulator now
supports full 32-bit Unicode to whatever extent the host platform
allows it to. For example, if you output a 4-or-more-byte UTF-8
character in Unix pterm, it will not display it properly, but it
will correctly paste it back out in a UTF8_STRING selection. Windows
is more restricted, sadly.
[originally from svn r4609]
2004-10-13 11:50:16 +00:00
|
|
|
termchar *ltemp;
|
2004-10-14 16:42:43 +00:00
|
|
|
int ltemp_size;
|
2004-05-22 10:36:50 +00:00
|
|
|
bidi_char *wcFrom, *wcTo;
|
2004-10-14 16:42:43 +00:00
|
|
|
int wcFromTo_size;
|
2004-10-15 11:11:19 +00:00
|
|
|
struct bidi_cache_entry *pre_bidi_cache, *post_bidi_cache;
|
New array-growing macros: sgrowarray and sgrowarrayn.
The idea of these is that they centralise the common idiom along the
lines of
if (logical_array_len >= physical_array_size) {
physical_array_size = logical_array_len * 5 / 4 + 256;
array = sresize(array, physical_array_size, ElementType);
}
which happens at a zillion call sites throughout this code base, with
different random choices of the geometric factor and additive
constant, sometimes forgetting them completely, and generally doing a
lot of repeated work.
The new macro sgrowarray(array,size,n) has the semantics: here are the
array pointer and its physical size for you to modify, now please
ensure that the nth element exists, so I can write into it. And
sgrowarrayn(array,size,n,m) is the same except that it ensures that
the array has size at least n+m (so sgrowarray is just the special
case where m=1).
Now that this is a single centralised implementation that will be used
everywhere, I've also gone to more effort in the implementation, with
careful overflow checks that would have been painful to put at all the
previous call sites.
This commit also switches over every use of sresize(), apart from a
few where I really didn't think it would gain anything. A consequence
of that is that a lot of array-size variables have to have their types
changed to size_t, because the macros require that (they address-take
the size to pass to the underlying function).
2019-02-28 20:07:30 +00:00
|
|
|
size_t bidi_cache_size;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We copy a bunch of stuff out of the Conf structure into local
|
|
|
|
* fields in the Terminal structure, to avoid the repeated
|
|
|
|
* tree234 lookups which would be involved in fetching them from
|
|
|
|
* the former every time.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool ansi_colour;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
char *answerback;
|
|
|
|
int answerbacklen;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool arabicshaping;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int beep;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool bellovl;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int bellovl_n;
|
|
|
|
int bellovl_s;
|
|
|
|
int bellovl_t;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool bidi;
|
|
|
|
bool bksp_is_delete;
|
|
|
|
bool blink_cur;
|
|
|
|
bool blinktext;
|
|
|
|
bool cjk_ambig_wide;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int conf_height;
|
|
|
|
int conf_width;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool crhaslf;
|
|
|
|
bool erase_to_scrollback;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int funky_type;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool lfhascr;
|
|
|
|
bool logflush;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int logtype;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool mouse_override;
|
|
|
|
bool nethack_keypad;
|
|
|
|
bool no_alt_screen;
|
|
|
|
bool no_applic_c;
|
|
|
|
bool no_applic_k;
|
|
|
|
bool no_dbackspace;
|
|
|
|
bool no_mouse_rep;
|
|
|
|
bool no_remote_charset;
|
|
|
|
bool no_remote_resize;
|
|
|
|
bool no_remote_wintitle;
|
|
|
|
bool no_remote_clearscroll;
|
|
|
|
bool rawcnp;
|
|
|
|
bool utf8linedraw;
|
|
|
|
bool rect_select;
|
Post-release destabilisation! Completely remove the struct type
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
2011-07-14 18:52:21 +00:00
|
|
|
int remote_qtitle_action;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool rxvt_homeend;
|
|
|
|
bool scroll_on_disp;
|
|
|
|
bool scroll_on_key;
|
|
|
|
bool xterm_256_colour;
|
|
|
|
bool true_colour;
|
2017-12-09 12:00:13 +00:00
|
|
|
|
2017-12-10 14:53:55 +00:00
|
|
|
wchar_t *last_selected_text;
|
|
|
|
int *last_selected_attr;
|
|
|
|
truecolour *last_selected_tc;
|
|
|
|
size_t last_selected_len;
|
2017-12-10 15:45:45 +00:00
|
|
|
int mouse_select_clipboards[N_CLIPBOARDS];
|
|
|
|
int n_mouse_select_clipboards;
|
2017-12-09 12:00:13 +00:00
|
|
|
int mouse_paste_clipboard;
|
2002-10-23 09:11:36 +00:00
|
|
|
};
|
|
|
|
|
2019-02-27 19:47:12 +00:00
|
|
|
static inline bool in_utf(Terminal *term)
|
|
|
|
{
|
|
|
|
return term->utf || term->ucsdata->line_codepage == CP_UTF8;
|
|
|
|
}
|
2002-10-23 09:11:36 +00:00
|
|
|
|
2019-03-04 20:53:41 +00:00
|
|
|
unsigned long term_translate(
|
|
|
|
Terminal *term, term_utf8_decode *utf8, unsigned char c);
|
2019-03-09 16:45:12 +00:00
|
|
|
static inline int term_char_width(Terminal *term, unsigned int c)
|
|
|
|
{
|
|
|
|
return term->cjk_ambig_wide ? mk_wcwidth_cjk(c) : mk_wcwidth(c);
|
|
|
|
}
|
2019-03-04 20:53:41 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* UCSINCOMPLETE is returned from term_translate if it's successfully
|
|
|
|
* absorbed a byte but not emitted a complete character yet.
|
|
|
|
* UCSTRUNCATED indicates a truncated multibyte sequence (so the
|
|
|
|
* caller emits an error character and then calls term_translate again
|
|
|
|
* with the same input byte). UCSINVALID indicates some other invalid
|
|
|
|
* multibyte sequence, such as an overlong synonym, or a standalone
|
|
|
|
* continuation byte, or a completely illegal thing like 0xFE. These
|
|
|
|
* values are not stored in the terminal data structures at all.
|
|
|
|
*/
|
|
|
|
#define UCSINCOMPLETE 0x8000003FU /* '?' */
|
|
|
|
#define UCSTRUNCATED 0x80000021U /* '!' */
|
|
|
|
#define UCSINVALID 0x8000002AU /* '*' */
|
|
|
|
|
2019-03-01 19:20:12 +00:00
|
|
|
/*
|
|
|
|
* Maximum number of combining characters we're willing to store in a
|
|
|
|
* character cell. Our linked-list data representation permits an
|
|
|
|
* unlimited number of these in principle, but if we allowed that in
|
|
|
|
* practice then it would be an easy DoS to just squirt a squillion
|
|
|
|
* identical combining characters to someone's terminal and cause
|
|
|
|
* their PuTTY or pterm to consume lots of memory and CPU pointlessly.
|
|
|
|
*
|
|
|
|
* The precise figure of 32 is more or less arbitrary, but one point
|
|
|
|
* supporting it is UAX #15's comment that 30 combining characters is
|
|
|
|
* "significantly beyond what is required for any linguistic or
|
|
|
|
* technical usage".
|
|
|
|
*/
|
|
|
|
#define CC_LIMIT 32
|
|
|
|
|
2002-10-23 09:11:36 +00:00
|
|
|
#endif
|