Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
/*
|
|
|
|
* Packet protocol layer for the SSH-1 login phase, from the server side.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
#include "ssh.h"
|
|
|
|
#include "sshbpp.h"
|
|
|
|
#include "sshppl.h"
|
|
|
|
#include "sshcr.h"
|
|
|
|
#include "sshserver.h"
|
|
|
|
|
|
|
|
struct ssh1_login_server_state {
|
|
|
|
int crState;
|
|
|
|
|
|
|
|
PacketProtocolLayer *successor_layer;
|
|
|
|
|
|
|
|
int remote_protoflags;
|
|
|
|
int local_protoflags;
|
|
|
|
unsigned long supported_ciphers_mask, supported_auths_mask;
|
|
|
|
unsigned cipher_type;
|
|
|
|
|
|
|
|
unsigned char cookie[8];
|
|
|
|
unsigned char session_key[32];
|
|
|
|
unsigned char session_id[16];
|
|
|
|
char *username_str;
|
|
|
|
ptrlen username;
|
|
|
|
|
|
|
|
struct RSAKey *servkey, *hostkey;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool servkey_generated_here;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
Bignum sesskey;
|
|
|
|
|
|
|
|
AuthPolicy *authpolicy;
|
|
|
|
unsigned ap_methods, current_method;
|
|
|
|
unsigned char auth_rsa_expected_response[16];
|
|
|
|
struct RSAKey *authkey;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool auth_successful;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
|
|
|
|
PacketProtocolLayer ppl;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void ssh1_login_server_free(PacketProtocolLayer *);
|
|
|
|
static void ssh1_login_server_process_queue(PacketProtocolLayer *);
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool ssh1_login_server_get_specials(
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
PacketProtocolLayer *ppl, add_special_fn_t add_special,
|
2018-10-29 19:50:29 +00:00
|
|
|
void *ctx) { return false; }
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
static void ssh1_login_server_special_cmd(PacketProtocolLayer *ppl,
|
|
|
|
SessionSpecialCode code, int arg) {}
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool ssh1_login_server_want_user_input(
|
2018-10-29 19:50:29 +00:00
|
|
|
PacketProtocolLayer *ppl) { return false; }
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
static void ssh1_login_server_got_user_input(PacketProtocolLayer *ppl) {}
|
|
|
|
static void ssh1_login_server_reconfigure(
|
|
|
|
PacketProtocolLayer *ppl, Conf *conf) {}
|
|
|
|
|
|
|
|
static const struct PacketProtocolLayerVtable ssh1_login_server_vtable = {
|
|
|
|
ssh1_login_server_free,
|
|
|
|
ssh1_login_server_process_queue,
|
|
|
|
ssh1_login_server_get_specials,
|
|
|
|
ssh1_login_server_special_cmd,
|
|
|
|
ssh1_login_server_want_user_input,
|
|
|
|
ssh1_login_server_got_user_input,
|
|
|
|
ssh1_login_server_reconfigure,
|
|
|
|
NULL /* no layer names in SSH-1 */,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void no_progress(void *param, int action, int phase, int iprogress) {}
|
|
|
|
|
|
|
|
PacketProtocolLayer *ssh1_login_server_new(
|
|
|
|
PacketProtocolLayer *successor_layer, struct RSAKey *hostkey,
|
|
|
|
AuthPolicy *authpolicy)
|
|
|
|
{
|
|
|
|
struct ssh1_login_server_state *s = snew(struct ssh1_login_server_state);
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
s->ppl.vt = &ssh1_login_server_vtable;
|
|
|
|
|
|
|
|
s->hostkey = hostkey;
|
|
|
|
s->authpolicy = authpolicy;
|
|
|
|
|
|
|
|
s->successor_layer = successor_layer;
|
|
|
|
return &s->ppl;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ssh1_login_server_free(PacketProtocolLayer *ppl)
|
|
|
|
{
|
|
|
|
struct ssh1_login_server_state *s =
|
|
|
|
container_of(ppl, struct ssh1_login_server_state, ppl);
|
|
|
|
|
|
|
|
if (s->successor_layer)
|
|
|
|
ssh_ppl_free(s->successor_layer);
|
|
|
|
|
|
|
|
if (s->servkey_generated_here && s->servkey) {
|
|
|
|
freersakey(s->servkey);
|
|
|
|
sfree(s->servkey);
|
|
|
|
}
|
|
|
|
|
|
|
|
smemclr(s->session_key, sizeof(s->session_key));
|
|
|
|
sfree(s->username_str);
|
|
|
|
|
|
|
|
sfree(s);
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool ssh1_login_server_filter_queue(struct ssh1_login_server_state *s)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
{
|
|
|
|
return ssh1_common_filter_queue(&s->ppl);
|
|
|
|
}
|
|
|
|
|
|
|
|
static PktIn *ssh1_login_server_pop(struct ssh1_login_server_state *s)
|
|
|
|
{
|
|
|
|
if (ssh1_login_server_filter_queue(s))
|
|
|
|
return NULL;
|
|
|
|
return pq_pop(s->ppl.in_pq);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ssh1_login_server_process_queue(PacketProtocolLayer *ppl)
|
|
|
|
{
|
|
|
|
struct ssh1_login_server_state *s =
|
|
|
|
container_of(ppl, struct ssh1_login_server_state, ppl);
|
|
|
|
PktIn *pktin;
|
|
|
|
PktOut *pktout;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Filter centrally handled messages off the front of the queue on
|
|
|
|
* every entry to this coroutine, no matter where we're resuming
|
|
|
|
* from, even if we're _not_ looping on pq_pop. That way we can
|
|
|
|
* still proactively handle those messages even if we're waiting
|
|
|
|
* for a user response. */
|
|
|
|
if (ssh1_login_server_filter_queue(s))
|
|
|
|
return;
|
|
|
|
|
|
|
|
crBegin(s->crState);
|
|
|
|
|
|
|
|
if (!s->servkey) {
|
|
|
|
int server_key_bits = s->hostkey->bytes - 256;
|
|
|
|
if (server_key_bits < 512)
|
|
|
|
server_key_bits = s->hostkey->bytes + 256;
|
|
|
|
s->servkey = snew(struct RSAKey);
|
|
|
|
rsa_generate(s->servkey, server_key_bits, no_progress, NULL);
|
|
|
|
s->servkey->comment = NULL;
|
2018-10-29 19:50:29 +00:00
|
|
|
s->servkey_generated_here = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
s->local_protoflags = SSH1_PROTOFLAGS_SUPPORTED;
|
|
|
|
/* FIXME: ability to configure this to a subset */
|
|
|
|
s->supported_ciphers_mask = ((1U << SSH_CIPHER_3DES) |
|
|
|
|
(1U << SSH_CIPHER_BLOWFISH) |
|
|
|
|
(1U << SSH_CIPHER_DES));
|
|
|
|
s->supported_auths_mask = 0;
|
|
|
|
s->ap_methods = auth_methods(s->authpolicy);
|
|
|
|
if (s->ap_methods & AUTHMETHOD_PASSWORD)
|
|
|
|
s->supported_auths_mask |= (1U << SSH1_AUTH_PASSWORD);
|
|
|
|
if (s->ap_methods & AUTHMETHOD_PUBLICKEY)
|
|
|
|
s->supported_auths_mask |= (1U << SSH1_AUTH_RSA);
|
2018-10-22 20:32:58 +01:00
|
|
|
if (s->ap_methods & AUTHMETHOD_TIS)
|
|
|
|
s->supported_auths_mask |= (1U << SSH1_AUTH_TIS);
|
|
|
|
if (s->ap_methods & AUTHMETHOD_CRYPTOCARD)
|
|
|
|
s->supported_auths_mask |= (1U << SSH1_AUTH_CCARD);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
s->cookie[i] = random_byte();
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_PUBLIC_KEY);
|
|
|
|
put_data(pktout, s->cookie, 8);
|
|
|
|
rsa_ssh1_public_blob(BinarySink_UPCAST(pktout),
|
|
|
|
s->servkey, RSA_SSH1_EXPONENT_FIRST);
|
|
|
|
rsa_ssh1_public_blob(BinarySink_UPCAST(pktout),
|
|
|
|
s->hostkey, RSA_SSH1_EXPONENT_FIRST);
|
|
|
|
put_uint32(pktout, s->local_protoflags);
|
|
|
|
put_uint32(pktout, s->supported_ciphers_mask);
|
|
|
|
put_uint32(pktout, s->supported_auths_mask);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh1_login_server_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH1_CMSG_SESSION_KEY) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet in response"
|
|
|
|
" to initial public key packet, type %d (%s)",
|
|
|
|
pktin->type, ssh1_pkt_type(pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen client_cookie;
|
|
|
|
s->cipher_type = get_byte(pktin);
|
|
|
|
client_cookie = get_data(pktin, 8);
|
|
|
|
s->sesskey = get_mp_ssh1(pktin);
|
|
|
|
s->remote_protoflags = get_uint32(pktin);
|
|
|
|
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to parse session key packet");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (!ptrlen_eq_ptrlen(client_cookie, make_ptrlen(s->cookie, 8))) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Client sent incorrect anti-spoofing cookie");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (s->cipher_type >= 32 ||
|
|
|
|
!((s->supported_ciphers_mask >> s->cipher_type) & 1)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Client selected an unsupported cipher");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
struct RSAKey *smaller, *larger;
|
|
|
|
strbuf *data = strbuf_new();
|
|
|
|
|
|
|
|
if (bignum_bitcount(s->hostkey->modulus) >
|
|
|
|
bignum_bitcount(s->servkey->modulus)) {
|
|
|
|
larger = s->hostkey;
|
|
|
|
smaller = s->servkey;
|
|
|
|
} else {
|
|
|
|
smaller = s->hostkey;
|
|
|
|
larger = s->servkey;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rsa_ssh1_decrypt_pkcs1(s->sesskey, larger, data)) {
|
|
|
|
freebn(s->sesskey);
|
|
|
|
s->sesskey = bignum_from_bytes(data->u, data->len);
|
|
|
|
data->len = 0;
|
|
|
|
if (rsa_ssh1_decrypt_pkcs1(s->sesskey, smaller, data) &&
|
|
|
|
data->len == sizeof(s->session_key)) {
|
|
|
|
memcpy(s->session_key, data->u, sizeof(s->session_key));
|
|
|
|
freebn(s->sesskey);
|
|
|
|
s->sesskey = NULL; /* indicates success */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
strbuf_free(data);
|
|
|
|
}
|
|
|
|
if (s->sesskey) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Failed to decrypt session key");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh1_compute_session_id(s->session_id, s->cookie, s->hostkey, s->servkey);
|
|
|
|
|
|
|
|
for (i = 0; i < 16; i++)
|
|
|
|
s->session_key[i] ^= s->session_id[i];
|
|
|
|
|
|
|
|
{
|
|
|
|
const struct ssh1_cipheralg *cipher =
|
|
|
|
(s->cipher_type == SSH_CIPHER_BLOWFISH ? &ssh1_blowfish :
|
|
|
|
s->cipher_type == SSH_CIPHER_DES ? &ssh1_des : &ssh1_3des);
|
|
|
|
ssh1_bpp_new_cipher(s->ppl.bpp, cipher, s->session_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_SUCCESS);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh1_login_server_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH1_CMSG_USER) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet while "
|
|
|
|
"expecting username, type %d (%s)",
|
|
|
|
pktin->type, ssh1_pkt_type(pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->username = get_string(pktin);
|
|
|
|
s->username.ptr = s->username_str = mkstr(s->username);
|
|
|
|
ppl_logevent(("Received username '%.*s'", PTRLEN_PRINTF(s->username)));
|
|
|
|
|
|
|
|
s->auth_successful = auth_none(s->authpolicy, s->username);
|
|
|
|
while (1) {
|
|
|
|
/* Signal failed authentication */
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_FAILURE);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh1_login_server_pop(s)) != NULL);
|
|
|
|
if (pktin->type == SSH1_CMSG_AUTH_PASSWORD) {
|
|
|
|
s->current_method = AUTHMETHOD_PASSWORD;
|
|
|
|
if (!(s->ap_methods & s->current_method))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ptrlen password = get_string(pktin);
|
|
|
|
|
|
|
|
/* Tolerate historic traffic-analysis defence of NUL +
|
|
|
|
* garbage on the end of the binary password string */
|
|
|
|
char *nul = memchr(password.ptr, '\0', password.len);
|
|
|
|
if (nul)
|
|
|
|
password.len = (const char *)nul - (const char *)password.ptr;
|
|
|
|
|
2018-10-29 07:23:32 +00:00
|
|
|
if (auth_password(s->authpolicy, s->username, password, NULL))
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
goto auth_success;
|
|
|
|
} else if (pktin->type == SSH1_CMSG_AUTH_RSA) {
|
|
|
|
s->current_method = AUTHMETHOD_PUBLICKEY;
|
|
|
|
if (!(s->ap_methods & s->current_method))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
{
|
|
|
|
Bignum modulus = get_mp_ssh1(pktin);
|
|
|
|
s->authkey = auth_publickey_ssh1(
|
|
|
|
s->authpolicy, s->username, modulus);
|
|
|
|
freebn(modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!s->authkey)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (s->authkey->bytes < 32) {
|
|
|
|
ppl_logevent(("Auth key far too small"));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
unsigned char *rsabuf =
|
|
|
|
snewn(s->authkey->bytes, unsigned char);
|
|
|
|
struct MD5Context md5c;
|
|
|
|
|
|
|
|
for (i = 0; i < 32; i++)
|
|
|
|
rsabuf[i] = random_byte();
|
|
|
|
|
|
|
|
MD5Init(&md5c);
|
|
|
|
put_data(&md5c, rsabuf, 32);
|
|
|
|
put_data(&md5c, s->session_id, 16);
|
|
|
|
MD5Final(s->auth_rsa_expected_response, &md5c);
|
|
|
|
|
|
|
|
if (!rsa_ssh1_encrypt(rsabuf, 32, s->authkey)) {
|
|
|
|
sfree(rsabuf);
|
|
|
|
ppl_logevent(("Failed to encrypt auth challenge"));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
Bignum bn = bignum_from_bytes(rsabuf, s->authkey->bytes);
|
|
|
|
smemclr(rsabuf, s->authkey->bytes);
|
|
|
|
sfree(rsabuf);
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH1_SMSG_AUTH_RSA_CHALLENGE);
|
|
|
|
put_mp_ssh1(pktout, bn);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
freebn(bn);
|
|
|
|
}
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh1_login_server_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH1_CMSG_AUTH_RSA_RESPONSE) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet in "
|
|
|
|
"response to RSA auth challenge, type %d (%s)",
|
|
|
|
pktin->type, ssh1_pkt_type(pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen response = get_data(pktin, 16);
|
|
|
|
ptrlen expected = make_ptrlen(
|
|
|
|
s->auth_rsa_expected_response, 16);
|
|
|
|
if (!ptrlen_eq_ptrlen(response, expected)) {
|
|
|
|
ppl_logevent(("Wrong response to auth challenge"));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
goto auth_success;
|
2018-10-22 20:32:58 +01:00
|
|
|
} else if (pktin->type == SSH1_CMSG_AUTH_TIS ||
|
|
|
|
pktin->type == SSH1_CMSG_AUTH_CCARD) {
|
|
|
|
char *challenge;
|
|
|
|
unsigned response_type;
|
|
|
|
ptrlen response;
|
|
|
|
|
|
|
|
s->current_method = (pktin->type == SSH1_CMSG_AUTH_TIS ?
|
|
|
|
AUTHMETHOD_TIS : AUTHMETHOD_CRYPTOCARD);
|
|
|
|
if (!(s->ap_methods & s->current_method))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
challenge = auth_ssh1int_challenge(
|
|
|
|
s->authpolicy, s->current_method, s->username);
|
|
|
|
if (!challenge)
|
|
|
|
continue;
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp,
|
|
|
|
(s->current_method == AUTHMETHOD_TIS ?
|
|
|
|
SSH1_SMSG_AUTH_TIS_CHALLENGE :
|
|
|
|
SSH1_SMSG_AUTH_CCARD_CHALLENGE));
|
|
|
|
put_stringz(pktout, challenge);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
sfree(challenge);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh1_login_server_pop(s)) != NULL);
|
|
|
|
response_type = (s->current_method == AUTHMETHOD_TIS ?
|
|
|
|
SSH1_CMSG_AUTH_TIS_RESPONSE :
|
|
|
|
SSH1_CMSG_AUTH_CCARD_RESPONSE);
|
|
|
|
if (pktin->type != response_type) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet in "
|
|
|
|
"response to %s challenge, type %d (%s)",
|
|
|
|
(s->current_method == AUTHMETHOD_TIS ?
|
|
|
|
"TIS" : "CryptoCard"),
|
|
|
|
pktin->type, ssh1_pkt_type(pktin->type));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
response = get_string(pktin);
|
|
|
|
|
|
|
|
if (auth_ssh1int_response(s->authpolicy, response))
|
|
|
|
goto auth_success;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 22:09:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auth_success:
|
|
|
|
if (!auth_successful(s->authpolicy, s->username, s->current_method)) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Multiple authentications required but SSH-1"
|
|
|
|
" cannot perform them");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Signal successful authentication */
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_SUCCESS);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
ssh1_connection_set_protoflags(
|
|
|
|
s->successor_layer, s->local_protoflags, s->remote_protoflags);
|
|
|
|
{
|
|
|
|
PacketProtocolLayer *successor = s->successor_layer;
|
|
|
|
s->successor_layer = NULL; /* avoid freeing it ourself */
|
|
|
|
ssh_ppl_replace(&s->ppl, successor);
|
|
|
|
return; /* we've just freed s, so avoid even touching s->crState */
|
|
|
|
}
|
|
|
|
|
|
|
|
crFinishV;
|
|
|
|
}
|