1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/crypto/sha1-sw.c

156 lines
4.7 KiB
C
Raw Normal View History

Break up crypto modules containing HW acceleration. This applies to all of AES, SHA-1, SHA-256 and SHA-512. All those source files previously contained multiple implementations of the algorithm, enabled or disabled by ifdefs detecting whether they would work on a given compiler. And in order to get advanced machine instructions like AES-NI or NEON crypto into the output file when the compile flags hadn't enabled them, we had to do nasty stuff with compiler-specific pragmas or attributes. Now we can do the detection at cmake time, and enable advanced instructions in the more sensible way, by compile-time flags. So I've broken up each of these modules into lots of sub-pieces: a file called (e.g.) 'foo-common.c' containing common definitions across all implementations (such as round constants), one called 'foo-select.c' containing the top-level vtable(s), and a separate file for each implementation exporting just the vtable(s) for that implementation. One advantage of this is that it depends a lot less on compiler- specific bodgery. My particular least favourite part of the previous setup was the part where I had to _manually_ define some Arm ACLE feature macros before including <arm_neon.h>, so that it would define the intrinsics I wanted. Now I'm enabling interesting architecture features in the normal way, on the compiler command line, there's no need for that kind of trick: the right feature macros are already defined and <arm_neon.h> does the right thing. Another change in this reorganisation is that I've stopped assuming there's just one hardware implementation per platform. Previously, the accelerated vtables were called things like sha256_hw, and varied between FOO-NI and NEON depending on platform; and the selection code would simply ask 'is hw available? if so, use hw, else sw'. Now, each HW acceleration strategy names its vtable its own way, and the selection vtable has a whole list of possibilities to iterate over looking for a supported one. So if someone feels like writing a second accelerated implementation of something for a given platform - for example, I've heard you can use plain NEON to speed up AES somewhat even without the crypto extension - then it will now have somewhere to drop in alongside the existing ones.
2021-04-19 05:42:12 +00:00
/*
* Software implementation of SHA-1.
*/
#include "ssh.h"
#include "sha1.h"
static bool sha1_sw_available(void)
{
/* Software SHA-1 is always available */
return true;
}
static inline uint32_t rol(uint32_t x, unsigned y)
{
return (x << (31 & y)) | (x >> (31 & -y));
}
static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
{
return if0 ^ (ctrl & (if1 ^ if0));
}
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z)
{
return (x ^ y ^ z);
}
static inline void sha1_sw_round(
unsigned round_index, const uint32_t *schedule,
uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e,
uint32_t f, uint32_t constant)
{
*e = rol(*a, 5) + f + *e + schedule[round_index] + constant;
*b = rol(*b, 30);
}
static void sha1_sw_block(uint32_t *core, const uint8_t *block)
{
uint32_t w[SHA1_ROUNDS];
uint32_t a,b,c,d,e;
for (size_t t = 0; t < 16; t++)
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
for (size_t t = 16; t < SHA1_ROUNDS; t++)
w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1);
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4];
size_t t = 0;
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT);
}
core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e;
smemclr(w, sizeof(w));
}
typedef struct sha1_sw {
uint32_t core[5];
sha1_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_sw;
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha1_sw_new(const ssh_hashalg *alg)
{
sha1_sw *s = snew(sha1_sw);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static void sha1_sw_reset(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
memcpy(s->core, sha1_initial_state, sizeof(s->core));
sha1_block_setup(&s->blk);
}
static void sha1_sw_copyfrom(ssh_hash *hcopy, ssh_hash *horig)
{
sha1_sw *copy = container_of(hcopy, sha1_sw, hash);
sha1_sw *orig = container_of(horig, sha1_sw, hash);
memcpy(copy, orig, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
}
static void sha1_sw_free(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_sw_block(s->core, s->blk.block);
}
static void sha1_sw_digest(ssh_hash *hash, uint8_t *digest)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < 5; i++)
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
}
SHA1_VTABLE(sw, "unaccelerated");