2006-08-25 22:10:16 +00:00
|
|
|
/*
|
|
|
|
* winhandl.c: Module to give Windows front ends the general
|
|
|
|
* ability to deal with consoles, pipes, serial ports, or any other
|
|
|
|
* type of data stream accessed through a Windows API HANDLE rather
|
|
|
|
* than a WinSock SOCKET.
|
|
|
|
*
|
|
|
|
* We do this by spawning a subthread to continuously try to read
|
|
|
|
* from the handle. Every time a read successfully returns some
|
|
|
|
* data, the subthread sets an event object which is picked up by
|
|
|
|
* the main thread, and the main thread then sets an event in
|
|
|
|
* return to instruct the subthread to resume reading.
|
|
|
|
*
|
|
|
|
* Output works precisely the other way round, in a second
|
|
|
|
* subthread. The output subthread should not be attempting to
|
|
|
|
* write all the time, because it hasn't always got data _to_
|
|
|
|
* write; so the output thread waits for an event object notifying
|
|
|
|
* it to _attempt_ a write, and then it sets an event in return
|
|
|
|
* when one completes.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Generic definitions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Maximum amount of backlog we will allow to build up on an input
|
|
|
|
* handle before we stop reading from it.
|
|
|
|
*/
|
|
|
|
#define MAX_BACKLOG 32768
|
|
|
|
|
|
|
|
struct handle_generic {
|
|
|
|
/*
|
|
|
|
* Initial fields common to both handle_input and handle_output
|
|
|
|
* structures.
|
|
|
|
*
|
|
|
|
* The three HANDLEs are set up at initialisation time and are
|
|
|
|
* thereafter read-only to both main thread and subthread.
|
|
|
|
* `moribund' is only used by the main thread; `done' is
|
|
|
|
* written by the main thread before signalling to the
|
|
|
|
* subthread. `defunct' and `busy' are used only by the main
|
|
|
|
* thread.
|
|
|
|
*/
|
|
|
|
HANDLE h; /* the handle itself */
|
|
|
|
HANDLE ev_to_main; /* event used to signal main thread */
|
|
|
|
HANDLE ev_from_main; /* event used to signal back to us */
|
|
|
|
int moribund; /* are we going to kill this soon? */
|
|
|
|
int done; /* request subthread to terminate */
|
|
|
|
int defunct; /* has the subthread already gone? */
|
|
|
|
int busy; /* operation currently in progress? */
|
2006-08-26 07:41:15 +00:00
|
|
|
void *privdata; /* for client to remember who they are */
|
2006-08-25 22:10:16 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Input threads.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Data required by an input thread.
|
|
|
|
*/
|
|
|
|
struct handle_input {
|
|
|
|
/*
|
|
|
|
* Copy of the handle_generic structure.
|
|
|
|
*/
|
|
|
|
HANDLE h; /* the handle itself */
|
|
|
|
HANDLE ev_to_main; /* event used to signal main thread */
|
|
|
|
HANDLE ev_from_main; /* event used to signal back to us */
|
|
|
|
int moribund; /* are we going to kill this soon? */
|
|
|
|
int done; /* request subthread to terminate */
|
|
|
|
int defunct; /* has the subthread already gone? */
|
|
|
|
int busy; /* operation currently in progress? */
|
2006-08-26 07:41:15 +00:00
|
|
|
void *privdata; /* for client to remember who they are */
|
2006-08-25 22:10:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Data set by the input thread before signalling ev_to_main,
|
|
|
|
* and read by the main thread after receiving that signal.
|
|
|
|
*/
|
|
|
|
char buffer[4096]; /* the data read from the handle */
|
|
|
|
DWORD len; /* how much data that was */
|
|
|
|
int readret; /* lets us know about read errors */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Callback function called by this module when data arrives on
|
|
|
|
* an input handle.
|
|
|
|
*/
|
|
|
|
handle_inputfn_t gotdata;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The actual thread procedure for an input thread.
|
|
|
|
*/
|
|
|
|
static DWORD WINAPI handle_input_threadfunc(void *param)
|
|
|
|
{
|
|
|
|
struct handle_input *ctx = (struct handle_input *) param;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
ctx->readret = ReadFile(ctx->h, ctx->buffer, sizeof(ctx->buffer),
|
|
|
|
&ctx->len, NULL);
|
|
|
|
if (!ctx->readret)
|
|
|
|
ctx->len = 0;
|
|
|
|
|
|
|
|
SetEvent(ctx->ev_to_main);
|
|
|
|
|
|
|
|
if (!ctx->len)
|
|
|
|
break;
|
|
|
|
|
|
|
|
WaitForSingleObject(ctx->ev_from_main, INFINITE);
|
|
|
|
if (ctx->done)
|
|
|
|
break; /* main thread told us to shut down */
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called after a succcessful read, or from the
|
|
|
|
* `unthrottle' function. It decides whether or not to begin a new
|
|
|
|
* read operation.
|
|
|
|
*/
|
|
|
|
static void handle_throttle(struct handle_input *ctx, int backlog)
|
|
|
|
{
|
|
|
|
assert(!ctx->defunct);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there's a read operation already in progress, do nothing:
|
|
|
|
* when that completes, we'll come back here and be in a
|
|
|
|
* position to make a better decision.
|
|
|
|
*/
|
|
|
|
if (ctx->busy)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Otherwise, we must decide whether to start a new read based
|
|
|
|
* on the size of the backlog.
|
|
|
|
*/
|
|
|
|
if (backlog < MAX_BACKLOG) {
|
|
|
|
SetEvent(ctx->ev_from_main);
|
|
|
|
ctx->busy = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Output threads.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Data required by an output thread.
|
|
|
|
*/
|
|
|
|
struct handle_output {
|
|
|
|
/*
|
|
|
|
* Copy of the handle_generic structure.
|
|
|
|
*/
|
|
|
|
HANDLE h; /* the handle itself */
|
|
|
|
HANDLE ev_to_main; /* event used to signal main thread */
|
|
|
|
HANDLE ev_from_main; /* event used to signal back to us */
|
|
|
|
int moribund; /* are we going to kill this soon? */
|
|
|
|
int done; /* request subthread to terminate */
|
|
|
|
int defunct; /* has the subthread already gone? */
|
|
|
|
int busy; /* operation currently in progress? */
|
2006-08-26 07:41:15 +00:00
|
|
|
void *privdata; /* for client to remember who they are */
|
2006-08-25 22:10:16 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Data set by the main thread before signalling ev_from_main,
|
|
|
|
* and read by the input thread after receiving that signal.
|
|
|
|
*/
|
|
|
|
char *buffer; /* the data to write */
|
|
|
|
DWORD len; /* how much data there is */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Data set by the input thread before signalling ev_to_main,
|
|
|
|
* and read by the main thread after receiving that signal.
|
|
|
|
*/
|
|
|
|
DWORD lenwritten; /* how much data we actually wrote */
|
|
|
|
int writeret; /* return value from WriteFile */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Data only ever read or written by the main thread.
|
|
|
|
*/
|
|
|
|
bufchain queued_data; /* data still waiting to be written */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Callback function called when the backlog in the bufchain
|
|
|
|
* drops.
|
|
|
|
*/
|
|
|
|
handle_outputfn_t sentdata;
|
|
|
|
};
|
|
|
|
|
|
|
|
static DWORD WINAPI handle_output_threadfunc(void *param)
|
|
|
|
{
|
|
|
|
struct handle_output *ctx = (struct handle_output *) param;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
WaitForSingleObject(ctx->ev_from_main, INFINITE);
|
|
|
|
if (ctx->done) {
|
|
|
|
SetEvent(ctx->ev_to_main);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
ctx->writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
|
|
|
|
&ctx->lenwritten, NULL);
|
|
|
|
SetEvent(ctx->ev_to_main);
|
|
|
|
if (!ctx->writeret)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_try_output(struct handle_output *ctx)
|
|
|
|
{
|
|
|
|
void *senddata;
|
|
|
|
int sendlen;
|
|
|
|
|
|
|
|
if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
|
|
|
|
bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
|
|
|
|
ctx->buffer = senddata;
|
|
|
|
ctx->len = sendlen;
|
|
|
|
SetEvent(ctx->ev_from_main);
|
|
|
|
ctx->busy = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Unified code handling both input and output threads.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct handle {
|
|
|
|
int output;
|
|
|
|
union {
|
|
|
|
struct handle_generic g;
|
|
|
|
struct handle_input i;
|
|
|
|
struct handle_output o;
|
|
|
|
} u;
|
|
|
|
};
|
|
|
|
|
|
|
|
static tree234 *handles_by_evtomain;
|
|
|
|
|
|
|
|
static int handle_cmp_evtomain(void *av, void *bv)
|
|
|
|
{
|
|
|
|
struct handle *a = (struct handle *)av;
|
|
|
|
struct handle *b = (struct handle *)bv;
|
|
|
|
|
|
|
|
if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
|
|
|
|
return -1;
|
|
|
|
else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
|
|
|
|
return +1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int handle_find_evtomain(void *av, void *bv)
|
|
|
|
{
|
|
|
|
HANDLE *a = (HANDLE *)av;
|
|
|
|
struct handle *b = (struct handle *)bv;
|
|
|
|
|
|
|
|
if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
|
|
|
|
return -1;
|
|
|
|
else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
|
|
|
|
return +1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-08-26 07:41:15 +00:00
|
|
|
struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
|
|
|
|
void *privdata)
|
2006-08-25 22:10:16 +00:00
|
|
|
{
|
|
|
|
struct handle *h = snew(struct handle);
|
|
|
|
|
|
|
|
h->output = FALSE;
|
|
|
|
h->u.i.h = handle;
|
|
|
|
h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
|
|
|
h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
|
|
|
h->u.i.gotdata = gotdata;
|
|
|
|
h->u.i.busy = FALSE;
|
|
|
|
h->u.i.defunct = FALSE;
|
|
|
|
h->u.i.moribund = FALSE;
|
|
|
|
h->u.i.done = FALSE;
|
2006-08-26 07:41:15 +00:00
|
|
|
h->u.i.privdata = privdata;
|
2006-08-25 22:10:16 +00:00
|
|
|
|
|
|
|
if (!handles_by_evtomain)
|
|
|
|
handles_by_evtomain = newtree234(handle_cmp_evtomain);
|
|
|
|
add234(handles_by_evtomain, h);
|
|
|
|
|
|
|
|
CreateThread(NULL, 0, handle_input_threadfunc,
|
|
|
|
&h->u.i, 0, NULL);
|
|
|
|
|
|
|
|
handle_throttle(&h->u.i, 0); /* start first read operation */
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
2006-08-26 07:41:15 +00:00
|
|
|
struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
|
|
|
|
void *privdata)
|
2006-08-25 22:10:16 +00:00
|
|
|
{
|
|
|
|
struct handle *h = snew(struct handle);
|
|
|
|
|
|
|
|
h->output = TRUE;
|
|
|
|
h->u.o.h = handle;
|
|
|
|
h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
|
|
|
h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
|
|
|
|
h->u.o.busy = FALSE;
|
|
|
|
h->u.o.defunct = FALSE;
|
|
|
|
h->u.o.moribund = FALSE;
|
|
|
|
h->u.o.done = FALSE;
|
2006-08-26 07:41:15 +00:00
|
|
|
h->u.o.privdata = privdata;
|
2006-08-25 22:10:16 +00:00
|
|
|
bufchain_init(&h->u.o.queued_data);
|
|
|
|
h->u.o.sentdata = sentdata;
|
|
|
|
|
|
|
|
if (!handles_by_evtomain)
|
|
|
|
handles_by_evtomain = newtree234(handle_cmp_evtomain);
|
|
|
|
add234(handles_by_evtomain, h);
|
|
|
|
|
|
|
|
CreateThread(NULL, 0, handle_output_threadfunc,
|
|
|
|
&h->u.i, 0, NULL);
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
int handle_write(struct handle *h, const void *data, int len)
|
|
|
|
{
|
|
|
|
assert(h->output);
|
|
|
|
bufchain_add(&h->u.o.queued_data, data, len);
|
|
|
|
handle_try_output(&h->u.o);
|
|
|
|
return bufchain_size(&h->u.o.queued_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
HANDLE *handle_get_events(int *nevents)
|
|
|
|
{
|
|
|
|
HANDLE *ret;
|
|
|
|
struct handle *h;
|
|
|
|
int i, n, size;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Go through our tree counting the handle objects currently
|
|
|
|
* engaged in useful activity.
|
|
|
|
*/
|
|
|
|
ret = NULL;
|
|
|
|
n = size = 0;
|
|
|
|
if (handles_by_evtomain) {
|
|
|
|
for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
|
|
|
|
if (h->u.g.busy) {
|
|
|
|
if (n >= size) {
|
|
|
|
size += 32;
|
|
|
|
ret = sresize(ret, size, HANDLE);
|
|
|
|
}
|
|
|
|
ret[n++] = h->u.g.ev_to_main;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*nevents = n;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void handle_destroy(struct handle *h)
|
|
|
|
{
|
|
|
|
if (h->output)
|
|
|
|
bufchain_clear(&h->u.o.queued_data);
|
|
|
|
CloseHandle(h->u.g.ev_from_main);
|
|
|
|
CloseHandle(h->u.g.ev_to_main);
|
|
|
|
del234(handles_by_evtomain, h);
|
|
|
|
sfree(h);
|
|
|
|
}
|
|
|
|
|
|
|
|
void handle_free(struct handle *h)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* If the handle is currently busy, we cannot immediately free
|
|
|
|
* it. Instead we must wait until it's finished its current
|
|
|
|
* operation, because otherwise the subthread will write to
|
|
|
|
* invalid memory after we free its context from under it.
|
|
|
|
*/
|
|
|
|
assert(h && !h->u.g.moribund);
|
|
|
|
if (h->u.g.busy) {
|
|
|
|
/*
|
|
|
|
* Just set the moribund flag, which will be noticed next
|
|
|
|
* time an operation completes.
|
|
|
|
*/
|
|
|
|
h->u.g.moribund = TRUE;
|
|
|
|
} else if (h->u.g.defunct) {
|
|
|
|
/*
|
|
|
|
* There isn't even a subthread; we can go straight to
|
|
|
|
* handle_destroy.
|
|
|
|
*/
|
|
|
|
handle_destroy(h);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The subthread is alive but not busy, so we now signal it
|
|
|
|
* to die. Set the moribund flag to indicate that it will
|
|
|
|
* want destroying after that.
|
|
|
|
*/
|
|
|
|
h->u.g.moribund = TRUE;
|
|
|
|
h->u.g.done = TRUE;
|
|
|
|
SetEvent(h->u.g.ev_from_main);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void handle_got_event(HANDLE event)
|
|
|
|
{
|
|
|
|
struct handle *h;
|
|
|
|
|
|
|
|
assert(handles_by_evtomain);
|
|
|
|
h = find234(handles_by_evtomain, &event, handle_find_evtomain);
|
|
|
|
if (!h) {
|
|
|
|
/*
|
|
|
|
* This isn't an error condition. If two or more event
|
|
|
|
* objects were signalled during the same select operation,
|
|
|
|
* and processing of the first caused the second handle to
|
|
|
|
* be closed, then it will sometimes happen that we receive
|
|
|
|
* an event notification here for a handle which is already
|
|
|
|
* deceased. In that situation we simply do nothing.
|
|
|
|
*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (h->u.g.moribund) {
|
|
|
|
/*
|
|
|
|
* A moribund handle is already treated as dead from the
|
|
|
|
* external user's point of view, so do nothing with the
|
|
|
|
* actual event. Just signal the thread to die if
|
|
|
|
* necessary, or destroy the handle if not.
|
|
|
|
*/
|
|
|
|
if (h->u.g.done) {
|
|
|
|
handle_destroy(h);
|
|
|
|
} else {
|
|
|
|
h->u.g.done = TRUE;
|
|
|
|
SetEvent(h->u.g.ev_from_main);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!h->output) {
|
|
|
|
int backlog;
|
|
|
|
|
|
|
|
h->u.i.busy = FALSE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A signal on an input handle means data has arrived.
|
|
|
|
*/
|
|
|
|
if (h->u.i.len == 0) {
|
|
|
|
/*
|
|
|
|
* EOF, or (nearly equivalently) read error.
|
|
|
|
*/
|
|
|
|
h->u.i.gotdata(h, NULL, (h->u.i.readret ? 0 : -1));
|
|
|
|
h->u.i.defunct = TRUE;
|
|
|
|
} else {
|
|
|
|
backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
|
|
|
|
handle_throttle(&h->u.i, backlog);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
h->u.o.busy = FALSE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A signal on an output handle means we have completed a
|
|
|
|
* write. Call the callback to indicate that the output
|
|
|
|
* buffer size has decreased, or to indicate an error.
|
|
|
|
*/
|
|
|
|
if (!h->u.o.writeret) {
|
|
|
|
/*
|
|
|
|
* Write error. Send a negative value to the callback,
|
|
|
|
* and mark the thread as defunct (because the output
|
|
|
|
* thread is terminating by now).
|
|
|
|
*/
|
|
|
|
h->u.o.sentdata(h, -1);
|
|
|
|
h->u.o.defunct = TRUE;
|
|
|
|
} else {
|
|
|
|
bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
|
|
|
|
h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
|
|
|
|
handle_try_output(&h->u.o);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void handle_unthrottle(struct handle *h, int backlog)
|
|
|
|
{
|
|
|
|
assert(!h->output);
|
|
|
|
handle_throttle(&h->u.i, backlog);
|
|
|
|
}
|
|
|
|
|
|
|
|
int handle_backlog(struct handle *h)
|
|
|
|
{
|
|
|
|
assert(h->output);
|
|
|
|
return bufchain_size(&h->u.o.queued_data);
|
|
|
|
}
|
2006-08-26 07:41:15 +00:00
|
|
|
|
|
|
|
void *handle_get_privdata(struct handle *h)
|
|
|
|
{
|
|
|
|
return h->u.g.privdata;
|
|
|
|
}
|