1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-24 16:52:24 +00:00
putty-source/sftpcommon.c

140 lines
3.7 KiB
C
Raw Normal View History

Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
/*
* sftpcommon.c: SFTP code shared between client and server.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include "misc.h"
#include "sftp.h"
static void sftp_pkt_BinarySink_write(
BinarySink *bs, const void *data, size_t length)
{
struct sftp_packet *pkt = BinarySink_DOWNCAST(bs, struct sftp_packet);
assert(length <= 0xFFFFFFFFU - pkt->length);
sgrowarrayn_nm(pkt->data, pkt->maxlen, pkt->length, length);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
memcpy(pkt->data + pkt->length, data, length);
pkt->length += length;
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
struct sftp_packet *sftp_pkt_init(int type)
{
struct sftp_packet *pkt;
pkt = snew(struct sftp_packet);
pkt->data = NULL;
pkt->savedpos = -1;
pkt->length = 0;
pkt->maxlen = 0;
pkt->type = type;
BinarySink_INIT(pkt, sftp_pkt_BinarySink_write);
put_uint32(pkt, 0); /* length field will be filled in later */
put_byte(pkt, 0); /* so will the type field */
return pkt;
}
void BinarySink_put_fxp_attrs(BinarySink *bs, struct fxp_attrs attrs)
{
put_uint32(bs, attrs.flags);
if (attrs.flags & SSH_FILEXFER_ATTR_SIZE)
put_uint64(bs, attrs.size);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
if (attrs.flags & SSH_FILEXFER_ATTR_UIDGID) {
put_uint32(bs, attrs.uid);
put_uint32(bs, attrs.gid);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
if (attrs.flags & SSH_FILEXFER_ATTR_PERMISSIONS) {
put_uint32(bs, attrs.permissions);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
if (attrs.flags & SSH_FILEXFER_ATTR_ACMODTIME) {
put_uint32(bs, attrs.atime);
put_uint32(bs, attrs.mtime);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
if (attrs.flags & SSH_FILEXFER_ATTR_EXTENDED) {
/*
* We currently don't support sending any extended
* attributes.
*/
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
}
const struct fxp_attrs no_attrs = { 0 };
#define put_fxp_attrs(bs, attrs) \
BinarySink_put_fxp_attrs(BinarySink_UPCAST(bs), attrs)
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool BinarySource_get_fxp_attrs(BinarySource *src, struct fxp_attrs *attrs)
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
{
attrs->flags = get_uint32(src);
if (attrs->flags & SSH_FILEXFER_ATTR_SIZE)
attrs->size = get_uint64(src);
if (attrs->flags & SSH_FILEXFER_ATTR_UIDGID) {
attrs->uid = get_uint32(src);
attrs->gid = get_uint32(src);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
if (attrs->flags & SSH_FILEXFER_ATTR_PERMISSIONS)
attrs->permissions = get_uint32(src);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
if (attrs->flags & SSH_FILEXFER_ATTR_ACMODTIME) {
attrs->atime = get_uint32(src);
attrs->mtime = get_uint32(src);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
if (attrs->flags & SSH_FILEXFER_ATTR_EXTENDED) {
unsigned long count = get_uint32(src);
while (count--) {
if (get_err(src)) {
/* Truncated packet. Don't waste time looking for
* attributes that aren't there. Caller should spot
* the truncation. */
break;
}
/*
* We should try to analyse these, if we ever find one
* we recognise.
*/
get_string(src);
get_string(src);
}
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
return true;
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
}
void sftp_pkt_free(struct sftp_packet *pkt)
{
if (pkt->data)
sfree(pkt->data);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
sfree(pkt);
}
void sftp_send_prepare(struct sftp_packet *pkt)
{
PUT_32BIT_MSB_FIRST(pkt->data, pkt->length - 4);
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
if (pkt->length >= 5) {
/* Rewrite the type code, in case the caller changed its mind
* about pkt->type since calling sftp_pkt_init */
pkt->data[4] = pkt->type;
}
}
struct sftp_packet *sftp_recv_prepare(unsigned length)
{
struct sftp_packet *pkt;
pkt = snew(struct sftp_packet);
pkt->savedpos = 0;
pkt->length = pkt->maxlen = length;
pkt->data = snewn(pkt->length, char);
return pkt;
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool sftp_recv_finish(struct sftp_packet *pkt)
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
{
BinarySource_INIT(pkt, pkt->data, pkt->length);
pkt->type = get_byte(pkt);
return !get_err(pkt);
}