1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/ssh1connection-server.c

356 lines
11 KiB
C
Raw Normal View History

Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
/*
* Server-specific parts of the SSH-1 connection layer.
*/
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "sshbpp.h"
#include "sshppl.h"
#include "sshchan.h"
#include "sshcr.h"
#include "ssh1connection.h"
#include "sshserver.h"
static int ssh1sesschan_write(SshChannel *c, int is_stderr, const void *, int);
static void ssh1sesschan_write_eof(SshChannel *c);
static void ssh1sesschan_initiate_close(SshChannel *c, const char *err);
static void ssh1sesschan_send_exit_status(SshChannel *c, int status);
static void ssh1sesschan_send_exit_signal(
SshChannel *c, ptrlen signame, int core_dumped, ptrlen msg);
static const struct SshChannelVtable ssh1sesschan_vtable = {
ssh1sesschan_write,
ssh1sesschan_write_eof,
ssh1sesschan_initiate_close,
NULL /* unthrottle */,
NULL /* get_conf */,
NULL /* window_override_removed is only used by SSH-2 sharing */,
NULL /* x11_sharing_handover, likewise */,
ssh1sesschan_send_exit_status,
ssh1sesschan_send_exit_signal,
NULL /* send_exit_signal_numeric */,
NULL /* request_x11_forwarding */,
NULL /* request_agent_forwarding */,
NULL /* request_pty */,
NULL /* send_env_var */,
NULL /* start_shell */,
NULL /* start_command */,
NULL /* start_subsystem */,
NULL /* send_serial_break */,
NULL /* send_signal */,
NULL /* send_terminal_size_change */,
NULL /* hint_channel_is_simple */,
};
void ssh1_connection_direction_specific_setup(
struct ssh1_connection_state *s)
{
if (!s->mainchan_chan) {
s->mainchan_sc.vt = &ssh1sesschan_vtable;
s->mainchan_sc.cl = &s->cl;
Add an SFTP server to the SSH server code. Unlike the traditional Unix SSH server organisation, the SFTP server is built into the same process as all the rest of the code. sesschan.c spots a subsystem request for "sftp", and responds to it by instantiating an SftpServer object and swapping out its own vtable for one that talks to it. (I rather like the idea of an object swapping its own vtable for a different one in the middle of its lifetime! This is one of those tricks that would be absurdly hard to implement in a 'proper' OO language, but when you're doing vtables by hand in C, it's no more difficult than any other piece of ordinary pointer manipulation. As long as the methods in both vtables expect the same physical structure layout, it doesn't cause a problem.) The SftpServer object doesn't deal directly with SFTP packet formats; it implements the SFTP server logic in a more abstract way, by having a vtable method for each SFTP request type with an appropriate parameter list. It sends its replies by calling methods in another vtable called SftpReplyBuilder, which in the normal case will write an SFTP reply packet to send back to the client. So SftpServer can focus more or less completely on the details of a particular filesystem API - and hence, the implementation I've got lives in the unix source directory, and works directly with file descriptors and struct stat and the like. (One purpose of this abstraction layer is that I may well want to write a second dummy implementation, for test-suite purposes, with completely controllable behaviour, and now I have a handy place to plug it in in place of the live filesystem.) In between sesschan's parsing of the byte stream into SFTP packets and the SftpServer object, there's a layer in the new file sftpserver.c which does the actual packet decoding and encoding: each request packet is passed to that, which pulls the fields out of the request packet and calls the appropriate method of SftpServer. It also provides the default SftpReplyBuilder which makes the output packet. I've moved some code out of the previous SFTP client implementation - basic packet construction code, and in particular the BinarySink/ BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c, so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
s->mainchan_chan = sesschan_new(&s->mainchan_sc, s->ppl.logctx, NULL);
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
}
}
int ssh1_handle_direction_specific_packet(
struct ssh1_connection_state *s, PktIn *pktin)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
PktOut *pktout;
struct ssh1_channel *c;
unsigned remid;
ptrlen host, cmd, data;
char *host_str, *err;
int port, listenport, success;
switch (pktin->type) {
case SSH1_CMSG_EXEC_SHELL:
if (s->finished_setup)
goto unexpected_setup_packet;
ppl_logevent(("Client requested a shell"));
chan_run_shell(s->mainchan_chan);
s->finished_setup = TRUE;
return TRUE;
case SSH1_CMSG_EXEC_CMD:
if (s->finished_setup)
goto unexpected_setup_packet;
cmd = get_string(pktin);
ppl_logevent(("Client sent command '%.*s'", PTRLEN_PRINTF(cmd)));
chan_run_command(s->mainchan_chan, cmd);
s->finished_setup = TRUE;
return TRUE;
case SSH1_CMSG_REQUEST_COMPRESSION:
if (s->compressing) {
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_FAILURE);
pq_push(s->ppl.out_pq, pktout);
} else {
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_SUCCESS);
pq_push(s->ppl.out_pq, pktout);
/* Synchronous run of output formatting, to ensure that
* success packet is converted into wire format before we
* start compressing */
ssh_bpp_handle_output(s->ppl.bpp);
/* And now ensure that the _next_ packet will be the first
* compressed one. */
ssh1_bpp_start_compression(s->ppl.bpp);
s->compressing = TRUE;
}
return TRUE;
case SSH1_CMSG_REQUEST_PTY:
if (s->finished_setup)
goto unexpected_setup_packet;
{
ptrlen termtype = get_string(pktin);
unsigned height = get_uint32(pktin);
unsigned width = get_uint32(pktin);
unsigned pixwidth = get_uint32(pktin);
unsigned pixheight = get_uint32(pktin);
struct ssh_ttymodes modes = read_ttymodes_from_packet(
BinarySource_UPCAST(pktin), 1);
if (get_err(pktin)) {
ppl_logevent(("Unable to decode pty request packet"));
success = FALSE;
} else if (!chan_allocate_pty(
s->mainchan_chan, termtype, width, height,
pixwidth, pixheight, modes)) {
ppl_logevent(("Unable to allocate a pty"));
success = FALSE;
} else {
success = TRUE;
}
}
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, (success ? SSH1_SMSG_SUCCESS : SSH1_SMSG_FAILURE));
pq_push(s->ppl.out_pq, pktout);
return TRUE;
case SSH1_CMSG_PORT_FORWARD_REQUEST:
if (s->finished_setup)
goto unexpected_setup_packet;
listenport = toint(get_uint32(pktin));
host = get_string(pktin);
port = toint(get_uint32(pktin));
ppl_logevent(("Client requested port %d forward to %.*s:%d",
listenport, PTRLEN_PRINTF(host), port));
host_str = mkstr(host);
success = portfwdmgr_listen(
s->portfwdmgr, NULL, listenport, host_str, port, s->conf);
sfree(host_str);
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, (success ? SSH1_SMSG_SUCCESS : SSH1_SMSG_FAILURE));
pq_push(s->ppl.out_pq, pktout);
return TRUE;
case SSH1_CMSG_X11_REQUEST_FORWARDING:
if (s->finished_setup)
goto unexpected_setup_packet;
{
ptrlen authproto = get_string(pktin);
ptrlen authdata = get_string(pktin);
unsigned screen_number = 0;
if (s->remote_protoflags & SSH1_PROTOFLAG_SCREEN_NUMBER)
screen_number = get_uint32(pktin);
success = chan_enable_x11_forwarding(
s->mainchan_chan, FALSE, authproto, authdata, screen_number);
}
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, (success ? SSH1_SMSG_SUCCESS : SSH1_SMSG_FAILURE));
pq_push(s->ppl.out_pq, pktout);
return TRUE;
case SSH1_CMSG_AGENT_REQUEST_FORWARDING:
if (s->finished_setup)
goto unexpected_setup_packet;
success = chan_enable_agent_forwarding(s->mainchan_chan);
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, (success ? SSH1_SMSG_SUCCESS : SSH1_SMSG_FAILURE));
pq_push(s->ppl.out_pq, pktout);
return TRUE;
case SSH1_CMSG_STDIN_DATA:
data = get_string(pktin);
chan_send(s->mainchan_chan, FALSE, data.ptr, data.len);
return TRUE;
case SSH1_CMSG_EOF:
chan_send_eof(s->mainchan_chan);
return TRUE;
case SSH1_CMSG_WINDOW_SIZE:
return TRUE;
case SSH1_MSG_PORT_OPEN:
remid = get_uint32(pktin);
host = get_string(pktin);
port = toint(get_uint32(pktin));
host_str = mkstr(host);
ppl_logevent(("Received request to connect to port %s:%d",
host_str, port));
c = snew(struct ssh1_channel);
c->connlayer = s;
err = portfwdmgr_connect(
s->portfwdmgr, &c->chan, host_str, port,
&c->sc, ADDRTYPE_UNSPEC);
sfree(host_str);
if (err) {
ppl_logevent(("Port open failed: %s", err));
sfree(err);
ssh1_channel_free(c);
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH1_MSG_CHANNEL_OPEN_FAILURE);
put_uint32(pktout, remid);
pq_push(s->ppl.out_pq, pktout);
} else {
ssh1_channel_init(c);
c->remoteid = remid;
c->halfopen = FALSE;
pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH1_MSG_CHANNEL_OPEN_CONFIRMATION);
put_uint32(pktout, c->remoteid);
put_uint32(pktout, c->localid);
pq_push(s->ppl.out_pq, pktout);
ppl_logevent(("Forwarded port opened successfully"));
}
return TRUE;
default:
return FALSE;
}
unexpected_setup_packet:
ssh_proto_error(s->ppl.ssh, "Received unexpected setup packet after the "
"setup phase, type %d (%s)", pktin->type,
ssh1_pkt_type(pktin->type));
/* FIXME: ensure caller copes with us just having freed the whole layer */
return TRUE;
}
SshChannel *ssh1_session_open(ConnectionLayer *cl, Channel *chan)
{
assert(FALSE && "Should never be called in the server");
}
struct ssh_rportfwd *ssh1_rportfwd_alloc(
ConnectionLayer *cl,
const char *shost, int sport, const char *dhost, int dport,
int addressfamily, const char *log_description, PortFwdRecord *pfr,
ssh_sharing_connstate *share_ctx)
{
assert(FALSE && "Should never be called in the server");
return NULL;
}
static int ssh1sesschan_write(SshChannel *sc, int is_stderr,
const void *data, int len)
{
struct ssh1_connection_state *s =
container_of(sc, struct ssh1_connection_state, mainchan_sc);
PktOut *pktout;
pktout = ssh_bpp_new_pktout(
s->ppl.bpp,
(is_stderr ? SSH1_SMSG_STDERR_DATA : SSH1_SMSG_STDOUT_DATA));
put_string(pktout, data, len);
pq_push(s->ppl.out_pq, pktout);
return 0;
}
static void ssh1sesschan_write_eof(SshChannel *sc)
{
/* SSH-1 can't represent server-side EOF */
/* FIXME: some kind of check-termination system, whereby once this has been called _and_ we've had an exit status _and_ we've got no other channels open, we send the actual EXIT_STATUS message */
}
static void ssh1sesschan_initiate_close(SshChannel *sc, const char *err)
{
/* SSH-1 relies on the client to close the connection in the end */
}
static void ssh1sesschan_send_exit_status(SshChannel *sc, int status)
{
struct ssh1_connection_state *s =
container_of(sc, struct ssh1_connection_state, mainchan_sc);
PktOut *pktout;
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_EXIT_STATUS);
put_uint32(pktout, status);
pq_push(s->ppl.out_pq, pktout);
}
static void ssh1sesschan_send_exit_signal(
SshChannel *sc, ptrlen signame, int core_dumped, ptrlen msg)
{
/* SSH-1 has no separate representation for signals */
ssh1sesschan_send_exit_status(sc, 128);
}
SshChannel *ssh1_serverside_x11_open(
ConnectionLayer *cl, Channel *chan, const SocketPeerInfo *pi)
{
struct ssh1_connection_state *s =
container_of(cl, struct ssh1_connection_state, cl);
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
struct ssh1_channel *c = snew(struct ssh1_channel);
PktOut *pktout;
c->connlayer = s;
ssh1_channel_init(c);
c->halfopen = TRUE;
c->chan = chan;
ppl_logevent(("Forwarding X11 connection to client"));
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_X11_OPEN);
put_uint32(pktout, c->localid);
pq_push(s->ppl.out_pq, pktout);
return &c->sc;
}
SshChannel *ssh1_serverside_agent_open(ConnectionLayer *cl, Channel *chan)
{
struct ssh1_connection_state *s =
container_of(cl, struct ssh1_connection_state, cl);
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
struct ssh1_channel *c = snew(struct ssh1_channel);
PktOut *pktout;
c->connlayer = s;
ssh1_channel_init(c);
c->halfopen = TRUE;
c->chan = chan;
ppl_logevent(("Forwarding agent connection to client"));
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH1_SMSG_AGENT_OPEN);
put_uint32(pktout, c->localid);
pq_push(s->ppl.out_pq, pktout);
return &c->sc;
}