1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/proxy/telnet.c

369 lines
12 KiB
C
Raw Normal View History

Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
/*
* "Telnet" proxy negotiation.
*
* (This is for ad-hoc proxies where you connect to the proxy's
* telnet port and send a command such as `connect host port'. The
* command is configurable, since this proxy type is typically not
* standardised or at all well-defined.)
*/
#include "putty.h"
#include "network.h"
#include "proxy.h"
#include "sshcr.h"
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
char *format_telnet_command(SockAddr *addr, int port, Conf *conf,
unsigned *flags_out)
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
{
char *fmt = conf_get_str(conf, CONF_proxy_telnet_command);
int so = 0, eo = 0;
strbuf *buf = strbuf_new();
unsigned flags = 0;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
/* we need to escape \\, \%, \r, \n, \t, \x??, \0???,
* %%, %host, %port, %user, and %pass
*/
while (fmt[eo] != 0) {
/* scan forward until we hit end-of-line,
* or an escape character (\ or %) */
while (fmt[eo] != 0 && fmt[eo] != '%' && fmt[eo] != '\\')
eo++;
/* if we hit eol, break out of our escaping loop */
if (fmt[eo] == 0) break;
/* if there was any unescaped text before the escape
* character, send that now */
if (eo != so)
put_data(buf, fmt + so, eo - so);
so = eo++;
/* if the escape character was the last character of
* the line, we'll just stop and send it. */
if (fmt[eo] == 0) break;
if (fmt[so] == '\\') {
/* we recognize \\, \%, \r, \n, \t, \x??.
* anything else, we just send unescaped (including the \).
*/
switch (fmt[eo]) {
case '\\':
put_byte(buf, '\\');
eo++;
break;
case '%':
put_byte(buf, '%');
eo++;
break;
case 'r':
put_byte(buf, '\r');
eo++;
break;
case 'n':
put_byte(buf, '\n');
eo++;
break;
case 't':
put_byte(buf, '\t');
eo++;
break;
case 'x':
case 'X': {
/* escaped hexadecimal value (ie. \xff) */
unsigned char v = 0;
int i = 0;
for (;;) {
eo++;
if (fmt[eo] >= '0' && fmt[eo] <= '9')
v += fmt[eo] - '0';
else if (fmt[eo] >= 'a' && fmt[eo] <= 'f')
v += fmt[eo] - 'a' + 10;
else if (fmt[eo] >= 'A' && fmt[eo] <= 'F')
v += fmt[eo] - 'A' + 10;
else {
/* non hex character, so we abort and just
* send the whole thing unescaped (including \x)
*/
put_byte(buf, '\\');
eo = so + 1;
break;
}
/* we only extract two hex characters */
if (i == 1) {
put_byte(buf, v);
eo++;
break;
}
i++;
v <<= 4;
}
break;
}
default:
put_data(buf, fmt + so, 2);
eo++;
break;
}
} else {
/* % escape. we recognize %%, %host, %port, %user, %pass.
* %proxyhost, %proxyport. Anything else we just send
* unescaped (including the %).
*/
if (fmt[eo] == '%') {
put_byte(buf, '%');
eo++;
}
else if (strnicmp(fmt + eo, "host", 4) == 0) {
char dest[512];
sk_getaddr(addr, dest, lenof(dest));
put_data(buf, dest, strlen(dest));
eo += 4;
}
else if (strnicmp(fmt + eo, "port", 4) == 0) {
put_fmt(buf, "%d", port);
eo += 4;
}
else if (strnicmp(fmt + eo, "user", 4) == 0) {
const char *username = conf_get_str(conf, CONF_proxy_username);
put_data(buf, username, strlen(username));
eo += 4;
if (!*username)
flags |= TELNET_CMD_MISSING_USERNAME;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
}
else if (strnicmp(fmt + eo, "pass", 4) == 0) {
const char *password = conf_get_str(conf, CONF_proxy_password);
put_data(buf, password, strlen(password));
eo += 4;
if (!*password)
flags |= TELNET_CMD_MISSING_PASSWORD;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
}
else if (strnicmp(fmt + eo, "proxyhost", 9) == 0) {
const char *host = conf_get_str(conf, CONF_proxy_host);
put_data(buf, host, strlen(host));
eo += 9;
}
else if (strnicmp(fmt + eo, "proxyport", 9) == 0) {
int port = conf_get_int(conf, CONF_proxy_port);
put_fmt(buf, "%d", port);
eo += 9;
}
else {
/* we don't escape this, so send the % now, and
* don't advance eo, so that we'll consider the
* text immediately following the % as unescaped.
*/
put_byte(buf, '%');
}
}
/* resume scanning for additional escapes after this one. */
so = eo;
}
/* if there is any unescaped text at the end of the line, send it */
if (eo != so) {
put_data(buf, fmt + so, eo - so);
}
if (flags_out)
*flags_out = flags;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
return strbuf_to_str(buf);
}
typedef struct TelnetProxyNegotiator {
int crLine;
Conf *conf;
char *formatted_cmd;
prompts_t *prompts;
int username_prompt_index, password_prompt_index;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
ProxyNegotiator pn;
} TelnetProxyNegotiator;
static ProxyNegotiator *proxy_telnet_new(const ProxyNegotiatorVT *vt)
{
TelnetProxyNegotiator *s = snew(TelnetProxyNegotiator);
memset(s, 0, sizeof(*s));
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
s->pn.vt = vt;
return &s->pn;
}
static void proxy_telnet_free(ProxyNegotiator *pn)
{
TelnetProxyNegotiator *s = container_of(pn, TelnetProxyNegotiator, pn);
if (s->conf)
conf_free(s->conf);
if (s->prompts)
free_prompts(s->prompts);
burnstr(s->formatted_cmd);
delete_callbacks_for_context(s);
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
sfree(s);
}
static void proxy_telnet_process_queue_callback(void *vctx)
{
TelnetProxyNegotiator *s = (TelnetProxyNegotiator *)vctx;
proxy_negotiator_process_queue(&s->pn);
}
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
static void proxy_telnet_process_queue(ProxyNegotiator *pn)
{
TelnetProxyNegotiator *s = container_of(pn, TelnetProxyNegotiator, pn);
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
crBegin(s->crLine);
s->conf = conf_copy(pn->ps->conf);
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
/*
* Make an initial attempt to figure out the command we want, and
* see if it tried to include a username or password that we don't
* have.
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
*/
{
unsigned flags;
s->formatted_cmd = format_telnet_command(
pn->ps->remote_addr, pn->ps->remote_port, s->conf, &flags);
if (pn->itr && (flags & (TELNET_CMD_MISSING_USERNAME |
TELNET_CMD_MISSING_PASSWORD))) {
burnstr(s->formatted_cmd);
s->formatted_cmd = NULL;
/*
* We're missing at least one of the two parts, and we
* have an Interactor we can use to prompt for them, so
* try it.
*/
s->prompts = proxy_new_prompts(pn->ps);
s->prompts->to_server = true;
s->prompts->from_server = false;
s->prompts->name = dupstr("Telnet proxy authentication");
if (flags & TELNET_CMD_MISSING_USERNAME) {
s->username_prompt_index = s->prompts->n_prompts;
add_prompt(s->prompts, dupstr("Proxy username: "), true);
} else {
s->username_prompt_index = -1;
}
if (flags & TELNET_CMD_MISSING_PASSWORD) {
s->password_prompt_index = s->prompts->n_prompts;
add_prompt(s->prompts, dupstr("Proxy password: "), false);
} else {
s->password_prompt_index = -1;
}
/*
* This prompt is presented extremely early in PuTTY's
* setup. (Very promptly, you might say.)
*
* In particular, we can get here through a chain of
* synchronous calls from backend_init, which means (in
* GUI PuTTY) that the terminal we'll be sending this
* prompt to may not have its Ldisc set up yet (due to
* cyclic dependencies among all the things that have to
* be initialised).
*
* So we'll start by having ourself called back via a
* toplevel callback, to make sure we don't call
* seat_get_userpass_input until we've returned from
* backend_init and the frontend has finished getting
* everything ready.
*/
queue_toplevel_callback(proxy_telnet_process_queue_callback, s);
crReturnV;
while (true) {
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult spr = seat_get_userpass_input(
interactor_announce(pn->itr), s->prompts);
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
if (spr.kind == SPRK_OK) {
break;
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
} else if (spr_is_abort(spr)) {
proxy_spr_abort(pn, spr);
crStopV;
}
crReturnV;
}
if (s->username_prompt_index != -1) {
conf_set_str(
s->conf, CONF_proxy_username,
prompt_get_result_ref(
s->prompts->prompts[s->username_prompt_index]));
}
if (s->password_prompt_index != -1) {
conf_set_str(
s->conf, CONF_proxy_password,
prompt_get_result_ref(
s->prompts->prompts[s->password_prompt_index]));
}
free_prompts(s->prompts);
s->prompts = NULL;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
}
/*
* Now format the command a second time, with the results of
* those prompts written into s->conf.
*/
s->formatted_cmd = format_telnet_command(
pn->ps->remote_addr, pn->ps->remote_port, s->conf, NULL);
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
}
/*
* Log the command, with some changes. Firstly, we regenerate it
* with the password masked; secondly, we escape control
* characters so that the log message is printable.
*/
conf_set_str(s->conf, CONF_proxy_password, "*password*");
{
char *censored_cmd = format_telnet_command(
pn->ps->remote_addr, pn->ps->remote_port, s->conf, NULL);
strbuf *logmsg = strbuf_new();
put_datapl(logmsg, PTRLEN_LITERAL("Sending Telnet proxy command: "));
put_c_string_literal(logmsg, ptrlen_from_asciz(censored_cmd));
plug_log(pn->ps->plug, PLUGLOG_PROXY_MSG, NULL, 0, logmsg->s, 0);
strbuf_free(logmsg);
sfree(censored_cmd);
}
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
/*
* Actually send the command.
*/
put_dataz(pn->output, s->formatted_cmd);
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
/*
* Unconditionally report success. We don't hang around waiting
* for error messages from the proxy, because this proxy type is
* so ad-hoc that we wouldn't know how to even recognise an error
* message if we saw one, let alone what to do about it.
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
*/
pn->done = true;
crFinishV;
Reorganise proxy system into coroutines. Previously, the proxy negotiation functions were written as explicit state machines, with ps->state being manually set to a sequence of positive integer values which would be tested by if statements in the next call to the same negotiation function. That's not how this code base likes to do things! We have a coroutine system to allow those state machines to be implicit rather than explicit, so that we can use ordinary control flow statements like while loops. Reorganised each proxy negotiation function into a coroutine-based system like that. While I'm at it, I've also moved each proxy negotiator out into its own source file, to make proxy.c less overcrowded and monolithic. And _that_ gave me the opportunity to define each negotiator as an implementation of a trait rather than as a single function - which means now each one can define its own local variables and have its own cleanup function, instead of all of them having to share the variables inside the main ProxySocket struct. In the new coroutine system, negotiators don't have to worry about the mechanics of actually sending data down the underlying Socket any more. The negotiator coroutine just appends to a bufchain (via a provided bufchain_sink), and after every call to the coroutine, central code in proxy.c transfers the data to the Socket itself. This avoids a lot of intermediate allocations within the negotiators, which previously kept having to make temporary strbufs or arrays in order to have something to point an sk_write() at; now they can just put formatted data directly into the output bufchain via the marshal.h interface. In this version of the code, I've also moved most of the SOCKS5 CHAP implementation from cproxy.c into socks5.c, so that it can sit in the same coroutine as the rest of the proxy negotiation control flow. That's because calling a sub-coroutine (co-subroutine?) is awkward to set up (though it is _possible_ - we do SSH-2 kex that way), and there's no real need to bother in this case, since the only thing that really needs to go in cproxy.c is the actual cryptography plus a flag to tell socks5.c whether to offer CHAP authentication in the first place.
2021-11-19 10:26:41 +00:00
}
const struct ProxyNegotiatorVT telnet_proxy_negotiator_vt = {
.new = proxy_telnet_new,
.free = proxy_telnet_free,
.process_queue = proxy_telnet_process_queue,
.type = "Telnet",
};