1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 09:27:59 +00:00
putty-source/timing.c

244 lines
5.9 KiB
C
Raw Normal View History

/*
* timing.c
*
* This module tracks any timers set up by schedule_timer(). It
* keeps all the currently active timers in a list; it informs the
* front end of when the next timer is due to go off if that
* changes; and, very importantly, it tracks the context pointers
* passed to schedule_timer(), so that if a context is freed all
* the timers associated with it can be immediately annulled.
*/
#include <assert.h>
#include <stdio.h>
#include "putty.h"
#include "tree234.h"
struct timer {
timer_fn_t fn;
void *ctx;
long now;
};
static tree234 *timers = NULL;
static tree234 *timer_contexts = NULL;
static long now = 0L;
static int compare_timers(void *av, void *bv)
{
struct timer *a = (struct timer *)av;
struct timer *b = (struct timer *)bv;
long at = a->now - now;
long bt = b->now - now;
if (at < bt)
return -1;
else if (at > bt)
return +1;
/*
* Failing that, compare on the other two fields, just so that
* we don't get unwanted equality.
*/
#ifdef __LCC__
/* lcc won't let us compare function pointers. Legal, but annoying. */
{
int c = memcmp(&a->fn, &b->fn, sizeof(a->fn));
if (c < 0)
return -1;
else if (c > 0)
return +1;
}
#else
if (a->fn < b->fn)
return -1;
else if (a->fn > b->fn)
return +1;
#endif
if (a->ctx < b->ctx)
return -1;
else if (a->ctx > b->ctx)
return +1;
/*
* Failing _that_, the two entries genuinely are equal, and we
* never have a need to store them separately in the tree.
*/
return 0;
}
static int compare_timer_contexts(void *av, void *bv)
{
char *a = (char *)av;
char *b = (char *)bv;
if (a < b)
return -1;
else if (a > b)
return +1;
return 0;
}
static void init_timers(void)
{
if (!timers) {
timers = newtree234(compare_timers);
timer_contexts = newtree234(compare_timer_contexts);
now = GETTICKCOUNT();
}
}
long schedule_timer(int ticks, timer_fn_t fn, void *ctx)
{
long when;
struct timer *t, *first;
init_timers();
when = ticks + GETTICKCOUNT();
/*
* Just in case our various defences against timing skew fail
* us: if we try to schedule a timer that's already in the
* past, we instead schedule it for the immediate future.
*/
if (when - now <= 0)
when = now + 1;
t = snew(struct timer);
t->fn = fn;
t->ctx = ctx;
t->now = when;
if (t != add234(timers, t)) {
sfree(t); /* identical timer already exists */
} else {
add234(timer_contexts, t->ctx);/* don't care if this fails */
}
first = (struct timer *)index234(timers, 0);
if (first == t) {
/*
* This timer is the very first on the list, so we must
* notify the front end.
*/
timer_change_notify(first->now);
}
return when;
}
/*
* Call to run any timers whose time has reached the present.
* Returns the time (in ticks) expected until the next timer after
* that triggers.
*/
int run_timers(long anow, long *next)
{
struct timer *first;
init_timers();
#ifdef TIMING_SYNC
/*
* In this ifdef I put some code which deals with the
* possibility that `anow' disagrees with GETTICKCOUNT by a
* significant margin. Our strategy for dealing with it differs
* depending on platform, because on some platforms
* GETTICKCOUNT is more likely to be right whereas on others
* `anow' is a better gold standard.
*/
{
long tnow = GETTICKCOUNT();
if (tnow + TICKSPERSEC/50 - anow < 0 ||
anow + TICKSPERSEC/50 - tnow < 0
) {
#if defined TIMING_SYNC_ANOW
/*
* If anow is accurate and the tick count is wrong,
* this is likely to be because the tick count is
* derived from the system clock which has changed (as
* can occur on Unix). Therefore, we resolve this by
* inventing an offset which is used to adjust all
* future output from GETTICKCOUNT.
*
* A platform which defines TIMING_SYNC_ANOW is
* expected to have also defined this offset variable
* in (its platform-specific adjunct to) putty.h.
* Therefore we can simply reference it here and assume
* that it will exist.
*/
tickcount_offset += anow - tnow;
#elif defined TIMING_SYNC_TICKCOUNT
/*
* If the tick count is more likely to be accurate, we
* simply use that as our time value, which may mean we
* run no timers in this call (because we got called
* early), or alternatively it may mean we run lots of
* timers in a hurry because we were called late.
*/
anow = tnow;
#else
/*
* Any platform which defines TIMING_SYNC must also define one of the two
* auxiliary symbols TIMING_SYNC_ANOW and TIMING_SYNC_TICKCOUNT, to
* indicate which measurement to trust when the two disagree.
*/
#error TIMING_SYNC definition incomplete
#endif
}
}
#endif
now = anow;
while (1) {
first = (struct timer *)index234(timers, 0);
if (!first)
return FALSE; /* no timers remaining */
if (find234(timer_contexts, first->ctx, NULL) == NULL) {
/*
* This timer belongs to a context that has been
* expired. Delete it without running.
*/
delpos234(timers, 0);
sfree(first);
} else if (first->now - now <= 0) {
/*
* This timer is active and has reached its running
* time. Run it.
*/
delpos234(timers, 0);
first->fn(first->ctx, first->now);
sfree(first);
} else {
/*
* This is the first still-active timer that is in the
* future. Return how long it has yet to go.
*/
*next = first->now;
return TRUE;
}
}
}
/*
* Call to expire all timers associated with a given context.
*/
void expire_timer_context(void *ctx)
{
init_timers();
/*
* We don't bother to check the return value; if the context
* already wasn't in the tree (presumably because no timers
* ever actually got scheduled for it) then that's fine and we
* simply don't need to do anything.
*/
del234(timer_contexts, ctx);
}