1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/test/sclog/sclog.c

593 lines
18 KiB
C
Raw Normal View History

New test system to detect side channels in crypto code. All the work I've put in in the last few months to eliminate timing and cache side channels from PuTTY's mp_int and cipher implementations has been on a seat-of-the-pants basis: just thinking very hard about what kinds of language construction I think would be safe to use, and trying not to absentmindedly leave a conditional branch or a cast to bool somewhere vital. Now I've got a test suite! The basic idea is that you run the same crypto primitive multiple times, with inputs differing only in ways that are supposed to avoid being leaked by timing or leaving evidence in the cache; then you instrument the code so that it logs all the control flow, memory access and a couple of other relevant things in each of those runs, and finally, compare the logs and expect them to be identical. The instrumentation is done using DynamoRIO, which I found to be well suited to this kind of work: it lets you define custom modifications of the code in a reasonably low-effort way, and it lets you work at both the low level of examining single instructions _and_ the higher level of the function call ABI (so you can give things like malloc special treatment, not to mention intercepting communications from the program being instrumented). Build instructions are all in the comment at the top of testsc.c. At present, I've found this test to give a 100% pass rate using gcc -O0 and -O3 (Ubuntu 18.10). With clang, there are a couple of failures, which I'll fix in the next commit.
2019-02-10 13:09:53 +00:00
/*
* sclog: the DynamoRIO instrumentation system that goes with the
* PuTTY test binary 'testsc'.
*
* For general discussion and build instructions, see the comment at
* the top of testsc.c.
*/
#include <inttypes.h>
#include <string.h>
#include "dr_api.h"
#include "drmgr.h"
#include "drsyms.h"
#include "drreg.h"
#include "drutil.h"
#include "drwrap.h"
/*
* The file we're currently logging to, if any.
*/
static file_t outfile = INVALID_FILE;
/*
* A counter which we can increment and decrement around any library
* function we don't want to log the details of what happens inside.
* Mainly this is for memory allocation functions, which will diverge
* control depending on the progress of their search for something
* they can allocate.
*/
size_t logging_paused = 0;
/*
* This log message appears at the start of whatever DynamoRIO
* considers a 'basic block', i.e. a sequence of instructions with no
* branches. Logging these is cheaper than logging every single
* instruction, and should still be adequate to detect any divergence
* of control flow.
*/
static void log_pc(const char *loc)
{
if (outfile == INVALID_FILE || logging_paused)
return;
dr_fprintf(outfile, "%s: start basic block\n", loc);
}
/*
* Hardware division instructions are unlikely to run in time
* independent of the data, so we log both their parameters.
*/
static void log_div(uint n, uint d, const char *loc)
{
if (outfile == INVALID_FILE || logging_paused)
return;
dr_fprintf(outfile, "%s: divide %"PRIuMAX" / %"PRIuMAX"\n",
loc, (uintmax_t)n, (uintmax_t)d);
}
/*
* Register-controlled shift instructions are not reliably one cycle
* long on all platforms, so we log the shift couhnt.
*/
static void log_var_shift(uint sh, const char *loc)
{
if (outfile == INVALID_FILE || logging_paused)
return;
dr_fprintf(outfile, "%s: var shift by %"PRIuMAX"\n", loc, (uintmax_t)sh);
}
/*
* We need to log memory accesses, so as to detect data-dependent
* changes in the access pattern (e.g. incautious use of a lookup
* table). But one thing we _can't_ control for perfectly is that in
* two successive runs of the same crypto primitive, malloc may be
* called, and may return different addresses - which of course is not
* dependent on the data (unless the size of the allocated block
* does).
*
* So we track all the memory allocations that happen during logging,
* and any addresses accessed within those blocks are logged as
* something along the lines of 'n bytes from the start of the mth
* allocation'.
*
* Allocations that happened before a given log file was opened are
* not tracked. The program under test will ensure that any of those
* used by the primitive are at the same address in all runs anyway.
*/
struct allocation {
/*
* We store the list of allocations in a linked list, so we can
* look them up by address, and delete them as they're freed.
*
* A balanced binary search tree would be faster, but this is
* easier to get right first time!
*/
struct allocation *prev, *next;
uintptr_t start, size, index;
};
static struct allocation alloc_ends[1] = { alloc_ends, alloc_ends, 0, 0, 0 };
static uintptr_t next_alloc_index = 0;
static void free_allocation(struct allocation *alloc)
{
alloc->next->prev = alloc->prev;
alloc->prev->next = alloc->next;
dr_global_free(alloc, sizeof(struct allocation));
}
/*
* Wrap the log_set_file() function in testsc.c, and respond to it by
* opening or closing log files.
*/
static void wrap_logsetfile(void *wrapctx, void **user_data)
{
if (outfile) {
dr_close_file(outfile);
outfile = INVALID_FILE;
}
const char *outfilename = drwrap_get_arg(wrapctx, 0);
if (outfilename) {
outfile = dr_open_file(outfilename, DR_FILE_WRITE_OVERWRITE);
DR_ASSERT(outfile != INVALID_FILE);
}
/*
* Reset the allocation list to empty, whenever we open or close a
* log file.
*/
while (alloc_ends->next != alloc_ends)
free_allocation(alloc_ends->next);
next_alloc_index = 0;
}
/*
* Wrap the dry_run() function in testsc.c, to tell it we're here.
*/
static void wrap_dryrun(void *wrapctx, void *user_data)
{
drwrap_set_retval(wrapctx, (void *)0);
}
/*
* Look up the memory allocation record corresponding to an address.
*/
static struct allocation *find_allocation(const void *ptr)
{
uintptr_t address = (uintptr_t)ptr;
for (struct allocation *alloc = alloc_ends->next;
alloc != alloc_ends; alloc = alloc->next) {
if (alloc && address - alloc->start < alloc->size)
return alloc;
}
return NULL;
}
/*
* Log a memory access.
*/
static void log_mem(app_pc addr, uint size, uint write, const char *loc)
{
if (outfile == INVALID_FILE || logging_paused)
return;
struct allocation *alloc = find_allocation((const void *)addr);
if (!alloc) {
dr_fprintf(outfile, "%s: %s %"PRIuMAX" @ %"PRIxMAX"\n",
loc, write ? "store" : "load", (uintmax_t)size,
(uintmax_t)addr);
} else {
dr_fprintf(outfile, "%s: %s %"PRIuMAX" @ allocations[%"PRIuPTR"]"
" + %"PRIxMAX"\n",
loc, write ? "store" : "load", (uintmax_t)size,
alloc->index, (uintmax_t)(addr - alloc->start));
}
}
/*
* Record the allocation of some memory. (Common code between malloc
* and realloc.)
*/
static void allocated(void *ptr, size_t size)
{
if (outfile == INVALID_FILE)
return; /* no need to track allocations outside a logging interval */
struct allocation *alloc = dr_global_alloc(sizeof(struct allocation));
alloc->start = (uintptr_t)ptr;
alloc->size = size;
alloc->index = next_alloc_index++;
alloc->prev = alloc_ends->prev;
alloc->next = alloc_ends;
alloc->prev->next = alloc->next->prev = alloc;
}
/*
* Record that memory has been freed. Note that we may free something
* that was allocated when we weren't logging, so we must cope with
* find_allocation returning NULL.
*/
static void freed(void *ptr)
{
struct allocation *alloc = find_allocation(ptr);
if (alloc)
free_allocation(alloc);
}
/*
* The actual wrapper functions for malloc, realloc and free.
*/
static void wrap_malloc_pre(void *wrapctx, void **user_data)
{
logging_paused++;
*user_data = drwrap_get_arg(wrapctx, 0);
}
static void wrap_free_pre(void *wrapctx, void **user_data)
{
logging_paused++;
void *ptr = drwrap_get_arg(wrapctx, 0);
freed(ptr);
}
static void wrap_realloc_pre(void *wrapctx, void **user_data)
{
logging_paused++;
void *ptr = drwrap_get_arg(wrapctx, 0);
freed(ptr);
*user_data = drwrap_get_arg(wrapctx, 1);
}
static void wrap_alloc_post(void *wrapctx, void *user_data)
{
void *ptr = drwrap_get_retval(wrapctx);
if (!ptr)
return;
size_t size = (size_t)user_data;
allocated(ptr, size);
logging_paused--;
}
/*
* We wrap the C library function memset, because I've noticed that at
* least one optimised implementation of it diverges control flow
* internally based on what appears to be the _alignment_ of the input
* pointer - and that alignment check can vary depending on the
* addresses of allocated blocks. So I can't guarantee no divergence
* of control flow inside memset if malloc doesn't return the same
* values, and instead I just have to trust that memset isn't reading
* the contents of the block and basing control flow decisions on that.
*/
static void wrap_memset_pre(void *wrapctx, void **user_data)
{
uint was_already_paused = logging_paused++;
if (outfile == INVALID_FILE || was_already_paused)
return;
const void *addr = drwrap_get_arg(wrapctx, 0);
size_t size = (size_t)drwrap_get_arg(wrapctx, 2);
struct allocation *alloc = find_allocation(addr);
if (!alloc) {
dr_fprintf(outfile, "memset %"PRIuMAX" @ %"PRIxMAX"\n",
(uintmax_t)size, (uintmax_t)addr);
} else {
dr_fprintf(outfile, "memset %"PRIuMAX" @ allocations[%"PRIuPTR"]"
" + %"PRIxMAX"\n", (uintmax_t)size, alloc->index,
(uintmax_t)(addr - alloc->start));
}
}
/*
* Common post-wrapper function for memset and free, whose entire
* function is to unpause the logging.
*/
static void unpause_post(void *wrapctx, void *user_data)
{
logging_paused--;
}
/*
* Make a string representation of the address of an instruction,
* including a function name and/or a file+line combination if
* possible. These will be logged alongside every act of interest
* where we can make one.
*/
static void instr_format_location(instr_t *instr, char **outloc)
{
app_pc addr = (app_pc)instr_get_app_pc(instr);
char location[2048], symbol[512], fileline[1024];
bool got_sym = false, got_line = false;
if (*outloc)
return;
symbol[0] = '\0';
fileline[0] = '\0';
module_data_t *data = dr_lookup_module(addr);
if (data) {
drsym_info_t sym;
char file[MAXIMUM_PATH];
sym.struct_size = sizeof(sym);
sym.name = symbol;
sym.name_size = sizeof(symbol);
sym.file = file;
sym.file_size = sizeof(file);
drsym_error_t status = drsym_lookup_address(
data->full_path, addr - data->start, &sym, DRSYM_DEFAULT_FLAGS);
got_line = (status == DRSYM_SUCCESS);
got_sym = got_line || status == DRSYM_ERROR_LINE_NOT_AVAILABLE;
if (got_line)
snprintf(fileline, sizeof(fileline), " = %s:%"PRIu64,
file, (uint64_t)sym.line);
}
snprintf(location, sizeof(location),
"%"PRIx64"%s%s%s",
(uint64_t)addr, got_sym ? " = " : "", got_sym ? symbol : "",
fileline);
size_t len = strlen(location) + 1;
char *loc = dr_global_alloc(len);
memcpy(loc, location, len);
*outloc = loc;
}
/*
* Function that tests a single operand of an instruction to see if
* it's a memory reference, and if so, adds a call to log_mem.
*/
static void try_mem_opnd(
void *drcontext, instrlist_t *bb, instr_t *instr, char **loc,
opnd_t opnd, bool write)
{
if (!opnd_is_memory_reference(opnd))
return;
instr_format_location(instr, loc);
reg_id_t r0, r1;
drreg_status_t st;
st = drreg_reserve_register(drcontext, bb, instr, NULL, &r0);
DR_ASSERT(st == DRREG_SUCCESS);
st = drreg_reserve_register(drcontext, bb, instr, NULL, &r1);
DR_ASSERT(st == DRREG_SUCCESS);
bool ok = drutil_insert_get_mem_addr(drcontext, bb, instr, opnd, r0, r1);
DR_ASSERT(ok);
uint size = drutil_opnd_mem_size_in_bytes(opnd, instr);
dr_insert_clean_call(
drcontext, bb, instr, (void *)log_mem, false,
4, opnd_create_reg(r0), OPND_CREATE_INT32(size),
OPND_CREATE_INT32(write), OPND_CREATE_INTPTR(*loc));
st = drreg_unreserve_register(drcontext, bb, instr, r1);
DR_ASSERT(st == DRREG_SUCCESS);
st = drreg_unreserve_register(drcontext, bb, instr, r0);
DR_ASSERT(st == DRREG_SUCCESS);
}
/*
* The main function called to instrument each machine instruction.
*/
static dr_emit_flags_t instrument_instr(
void *drcontext, void *tag, instrlist_t *bb, instr_t *instr,
bool for_trace, bool translating, void *user_data)
{
char *loc = NULL;
/*
* If this instruction is the first in its basic block, call
* log_pc to record that we're executing this block at all.
*/
if (drmgr_is_first_instr(drcontext, instr)) {
instr_format_location(instr, &loc);
dr_insert_clean_call(
drcontext, bb, instr, (void *)log_pc, false,
1, OPND_CREATE_INTPTR(loc));
}
/*
* If the instruction reads or writes memory, log its access.
*/
if (instr_reads_memory(instr) || instr_writes_memory(instr)) {
for (int i = 0, limit = instr_num_srcs(instr); i < limit; i++)
try_mem_opnd(drcontext, bb, instr, &loc,
instr_get_src(instr, i), false);
for (int i = 0, limit = instr_num_dsts(instr); i < limit; i++)
try_mem_opnd(drcontext, bb, instr, &loc,
instr_get_dst(instr, i), false);
}
/*
* Now do opcode-specific checks.
*/
int opcode = instr_get_opcode(instr);
switch (opcode) {
case OP_div:
case OP_idiv:
/*
* x86 hardware divisions. The operand order for DR's
* representation of these seem to be: 0 = denominator, 1 =
* numerator MSW, 2 = numerator LSW.
*/
instr_format_location(instr, &loc);
dr_insert_clean_call(
drcontext, bb, instr, (void *)log_div, false,
3, instr_get_src(instr, 2), instr_get_src(instr, 0),
OPND_CREATE_INTPTR(loc));
break;
case OP_shl:
case OP_shr:
case OP_sar:
case OP_shlx:
case OP_shrx:
case OP_sarx:
case OP_rol:
case OP_ror:
case OP_rcl:
case OP_rcr:
/*
* Shift instructions. If they're register-controlled, log the
* shift count.
*/
{
opnd_t shiftcount = instr_get_src(instr, 0);
if (!opnd_is_immed(shiftcount)) {
reg_id_t r0;
drreg_status_t st;
st = drreg_reserve_register(drcontext, bb, instr, NULL, &r0);
DR_ASSERT(st == DRREG_SUCCESS);
opnd_t op_r0 = opnd_create_reg(r0);
instrlist_preinsert(bb, instr, INSTR_CREATE_movzx(
drcontext, op_r0, shiftcount));
instr_format_location(instr, &loc);
dr_insert_clean_call(
drcontext, bb, instr, (void *)log_var_shift, false,
2, op_r0, OPND_CREATE_INTPTR(loc));
st = drreg_unreserve_register(drcontext, bb, instr, r0);
DR_ASSERT(st == DRREG_SUCCESS);
}
}
break;
}
return DR_EMIT_DEFAULT;
}
static void exit_event(void)
{
if (outfile != INVALID_FILE) {
dr_fprintf(outfile, "exit while recording enabled\n");
dr_close_file(outfile);
outfile = INVALID_FILE;
}
drsym_exit();
drreg_exit();
drwrap_exit();
drutil_exit();
drmgr_exit();
}
/*
* We ask DR to expand any x86 string instructions like REP MOVSB, so
* that we can log all the individual memory accesses without getting
* confused.
*/
static dr_emit_flags_t expand_rep_movsb(
void *drcontext, void *tag, instrlist_t *bb, bool for_trace,
bool translating)
{
bool ok = drutil_expand_rep_string(drcontext, bb);
DR_ASSERT(ok);
return DR_EMIT_DEFAULT;
}
typedef void (*prewrapper_t)(void *wrapctx, void **user_data);
typedef void (*postwrapper_t)(void *wrapctx, void *user_data);
/*
* Helper function for bulk use of drwrap.
*/
static void try_wrap_fn(const module_data_t *module, const char *name,
prewrapper_t pre, postwrapper_t post, bool *done)
{
if (*done)
return;
size_t offset;
drsym_error_t status = drsym_lookup_symbol(
module->full_path, name, &offset, DRSYM_DEFAULT_FLAGS);
if (status == DRSYM_SUCCESS) {
app_pc notify_fn = module->start + offset;
bool ok = drwrap_wrap(notify_fn, pre, post);
DR_ASSERT(ok);
*done = true;
}
}
/*
* When each module (e.g. shared library) is loaded, try to wrap all
* the functions we care about. For each one, we keep a static bool
* that will stop us trying again once we've found it the first time.
*/
static void load_module(
void *drcontext, const module_data_t *module, bool loaded)
{
#define TRY_WRAP(fn, pre, post) do \
{ \
static bool done_this_one = false; \
try_wrap_fn(module, fn, pre, post, &done_this_one); \
} while (0)
if (loaded) {
TRY_WRAP("log_to_file_real", wrap_logsetfile, NULL);
TRY_WRAP("dry_run_real", NULL, wrap_dryrun);
TRY_WRAP("malloc", wrap_malloc_pre, wrap_alloc_post);
TRY_WRAP("realloc", wrap_realloc_pre, wrap_alloc_post);
TRY_WRAP("free", wrap_free_pre, unpause_post);
TRY_WRAP("memset", wrap_memset_pre, unpause_post);
/*
* More strangely named versions of standard C library
* functions, which I've observed in practice to be where the
* calls end up. I think these are probably selected by
* STT_IFUNC in libc.so, so that the normally named version of
* the function is never reached at all.
*
* This list is not expected to be complete. If you re-run
* this test on a different platform and find control flow
* diverging inside some libc function that looks as if it's
* another name for malloc or memset or whatever, then you may
* need to add more aliases here to stop the test failing.
*/
TRY_WRAP("__GI___libc_malloc", wrap_malloc_pre, wrap_alloc_post);
TRY_WRAP("__GI___libc_realloc", wrap_realloc_pre, wrap_alloc_post);
TRY_WRAP("__GI___libc_free", wrap_free_pre, unpause_post);
TRY_WRAP("__memset_sse2_unaligned", wrap_memset_pre, unpause_post);
}
}
/*
* Main entry point that sets up all the facilities we need.
*/
DR_EXPORT void dr_client_main(client_id_t id, int argc, const char **argv)
{
dr_set_client_name(
"Time-sensitive activity logger for PuTTY crypto testing",
"https://www.chiark.greenend.org.uk/~sgtatham/putty/");
outfile = INVALID_FILE;
bool ok = drmgr_init();
DR_ASSERT(ok);
/*
* Run our main instrumentation pass with lower priority than
* drwrap, so that we don't start logging the inside of a function
* whose drwrap pre-wrapper would have wanted to disable logging.
*/
drmgr_priority_t pri = {sizeof(pri), "sclog", NULL, NULL,
DRMGR_PRIORITY_INSERT_DRWRAP+1};
ok = drmgr_register_bb_instrumentation_event(
NULL, instrument_instr, &pri);
DR_ASSERT(ok);
ok = drutil_init();
DR_ASSERT(ok);
ok = drwrap_init();
DR_ASSERT(ok);
drsym_error_t symstatus = drsym_init(0);
DR_ASSERT(symstatus == DRSYM_SUCCESS);
dr_register_exit_event(exit_event);
drreg_options_t ops = { sizeof(ops), 3, false };
drreg_status_t regstatus = drreg_init(&ops);
DR_ASSERT(regstatus == DRREG_SUCCESS);
drmgr_register_module_load_event(load_module);
ok = drmgr_register_bb_app2app_event(expand_rep_movsb, NULL);
DR_ASSERT(ok);
}