1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/ssh2bpp-bare.c

170 lines
5.0 KiB
C
Raw Normal View History

Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
/*
* Trivial binary packet protocol for the 'bare' ssh-connection
* protocol used in PuTTY's SSH-2 connection sharing system.
*/
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "sshbpp.h"
#include "sshcr.h"
struct ssh2_bare_bpp_state {
int crState;
long packetlen, maxlen;
unsigned char *data;
unsigned long incoming_sequence, outgoing_sequence;
PktIn *pktin;
BinaryPacketProtocol bpp;
};
static void ssh2_bare_bpp_free(BinaryPacketProtocol *bpp);
static void ssh2_bare_bpp_handle_input(BinaryPacketProtocol *bpp);
static PktOut *ssh2_bare_bpp_new_pktout(int type);
static void ssh2_bare_bpp_format_packet(BinaryPacketProtocol *bpp, PktOut *);
static const struct BinaryPacketProtocolVtable ssh2_bare_bpp_vtable = {
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
ssh2_bare_bpp_free,
ssh2_bare_bpp_handle_input,
ssh2_bare_bpp_new_pktout,
ssh2_bare_bpp_format_packet,
};
BinaryPacketProtocol *ssh2_bare_bpp_new(void)
{
struct ssh2_bare_bpp_state *s = snew(struct ssh2_bare_bpp_state);
memset(s, 0, sizeof(*s));
s->bpp.vt = &ssh2_bare_bpp_vtable;
return &s->bpp;
}
static void ssh2_bare_bpp_free(BinaryPacketProtocol *bpp)
{
struct ssh2_bare_bpp_state *s =
FROMFIELD(bpp, struct ssh2_bare_bpp_state, bpp);
sfree(s->pktin);
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
sfree(s);
}
#define BPP_READ(ptr, len) do \
{ \
crMaybeWaitUntilV(bufchain_try_fetch_consume( \
s->bpp.in_raw, ptr, len)); \
} while (0)
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
static void ssh2_bare_bpp_handle_input(BinaryPacketProtocol *bpp)
{
struct ssh2_bare_bpp_state *s =
FROMFIELD(bpp, struct ssh2_bare_bpp_state, bpp);
crBegin(s->crState);
while (1) {
/* Read the length field. */
{
unsigned char lenbuf[4];
BPP_READ(lenbuf, 4);
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
s->packetlen = toint(GET_32BIT_MSB_FIRST(lenbuf));
}
if (s->packetlen <= 0 || s->packetlen >= (long)OUR_V2_PACKETLIMIT) {
s->bpp.error = dupstr("Invalid packet length received");
crStopV;
}
/*
* Allocate the packet to return, now we know its length.
*/
s->pktin = snew_plus(PktIn, s->packetlen);
s->pktin->qnode.prev = s->pktin->qnode.next = NULL;
s->pktin->qnode.on_free_queue = FALSE;
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
s->maxlen = 0;
s->data = snew_plus_get_aux(s->pktin);
s->pktin->sequence = s->incoming_sequence++;
/*
* Read the remainder of the packet.
*/
BPP_READ(s->data, s->packetlen);
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
/*
* The data we just read is precisely the initial type byte
* followed by the packet payload.
*/
s->pktin->type = s->data[0];
s->data++;
s->packetlen--;
BinarySource_INIT(s->pktin, s->data, s->packetlen);
/*
* Log incoming packet, possibly omitting sensitive fields.
*/
if (s->bpp.logctx) {
logblank_t blanks[MAX_BLANKS];
int nblanks = ssh2_censor_packet(
s->bpp.pls, s->pktin->type, FALSE,
make_ptrlen(s->data, s->packetlen), blanks);
log_packet(s->bpp.logctx, PKT_INCOMING, s->pktin->type,
ssh2_pkt_type(s->bpp.pls->kctx, s->bpp.pls->actx,
s->pktin->type),
get_ptr(s->pktin), get_avail(s->pktin), nblanks, blanks,
&s->pktin->sequence, 0, NULL);
}
if (ssh2_bpp_check_unimplemented(&s->bpp, s->pktin)) {
sfree(s->pktin);
s->pktin = NULL;
continue;
}
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
pq_push(s->bpp.in_pq, s->pktin);
{
int type = s->pktin->type;
s->pktin = NULL;
if (type == SSH2_MSG_DISCONNECT)
s->bpp.seen_disconnect = TRUE;
}
}
crFinishV;
}
static PktOut *ssh2_bare_bpp_new_pktout(int pkt_type)
{
PktOut *pkt = ssh_new_packet();
pkt->length = 4; /* space for packet length */
pkt->type = pkt_type;
put_byte(pkt, pkt_type);
return pkt;
}
static void ssh2_bare_bpp_format_packet(BinaryPacketProtocol *bpp, PktOut *pkt)
{
struct ssh2_bare_bpp_state *s =
FROMFIELD(bpp, struct ssh2_bare_bpp_state, bpp);
if (s->bpp.logctx) {
ptrlen pktdata = make_ptrlen(pkt->data + 5, pkt->length - 5);
logblank_t blanks[MAX_BLANKS];
int nblanks = ssh2_censor_packet(
s->bpp.pls, pkt->type, TRUE, pktdata, blanks);
log_packet(s->bpp.logctx, PKT_OUTGOING, pkt->type,
ssh2_pkt_type(s->bpp.pls->kctx, s->bpp.pls->actx,
pkt->type),
pktdata.ptr, pktdata.len, nblanks, blanks,
&s->outgoing_sequence,
pkt->downstream_id, pkt->additional_log_text);
}
s->outgoing_sequence++; /* only for diagnostics, really */
PUT_32BIT(pkt->data, pkt->length - 4);
bufchain_add(s->bpp.out_raw, pkt->data, pkt->length);
ssh_free_pktout(pkt);
Move binary packet protocols and censoring out of ssh.c. sshbpp.h now defines a classoid that encapsulates both directions of an SSH binary packet protocol - that is, a system for reading a bufchain of incoming data and turning it into a stream of PktIn, and another system for taking a PktOut and turning it into data on an outgoing bufchain. The state structure in each of those files contains everything that used to be in the 'rdpkt2_state' structure and its friends, and also quite a lot of bits and pieces like cipher and MAC states that used to live in the main Ssh structure. One minor effect of this layer separation is that I've had to extend the packet dispatch table by one, because the BPP layer can no longer directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too short to have a type byte. Instead, I extend the PktIn type field to use an out-of-range value to encode that, and the easiest way to make that trigger an UNIMPLEMENTED message is to have the dispatch table contain an entry for it. (That's a system that may come in useful again - I was also wondering about inventing a fake type code to indicate network EOF, so that that could be propagated through the layers and be handled by whichever one currently knew best how to respond.) I've also moved the packet-censoring code into its own pair of files, partly because I was going to want to do that anyway sooner or later, and mostly because it's called from the BPP code, and the SSH-2 version in particular has to be called from both the main SSH-2 BPP and the bare unencrypted protocol used for connection sharing. While I was at it, I took the opportunity to merge the outgoing and incoming censor functions, so that the parts that were common between them (e.g. CHANNEL_DATA messages look the same in both directions) didn't need to be repeated.
2018-06-09 08:09:10 +00:00
}