1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 09:27:59 +00:00
putty-source/sshsh256.c

910 lines
28 KiB
C
Raw Normal View History

/*
* SHA-256 algorithm as described at
*
* http://csrc.nist.gov/cryptval/shs.html
*/
#include "ssh.h"
#include <assert.h>
/*
* Start by deciding whether we can support hardware SHA at all.
*/
#define HW_SHA256_NONE 0
#define HW_SHA256_NI 1
#define HW_SHA256_NEON 2
#ifdef _FORCE_SHA_NI
# define HW_SHA256 HW_SHA256_NI
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
(defined(__x86_64__) || defined(__i386))
# define HW_SHA256 HW_SHA256_NI
# endif
#elif defined(__GNUC__)
# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
(defined(__x86_64__) || defined(__i386))
# define HW_SHA256 HW_SHA256_NI
# endif
#elif defined (_MSC_VER)
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
# define HW_SHA256 HW_SHA256_NI
# endif
#endif
#ifdef _FORCE_SHA_NEON
# define HW_SHA256 HW_SHA256_NEON
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* Arm can potentially support both endiannesses, but this code
* hasn't been tested on anything but little. If anyone wants to
* run big-endian, they'll need to fix it first. */
#elif defined __ARM_FEATURE_CRYPTO
/* If the Arm crypto extension is available already, we can
* support NEON SHA without having to enable anything by hand */
# define HW_SHA256 HW_SHA256_NEON
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
(defined(__aarch64__))
/* clang can enable the crypto extension in AArch64 using
* __attribute__((target)) */
# define HW_SHA256 HW_SHA256_NEON
# define USE_CLANG_ATTR_TARGET_AARCH64
# endif
#elif defined _MSC_VER
/* Visual Studio supports the crypto extension when targeting
* AArch64, but as of VS2017, the AArch32 header doesn't quite
* manage it (declaring the shae/shad intrinsics without a round
* key operand). */
# if defined _M_ARM64
# define HW_SHA256 HW_SHA256_NEON
# if defined _M_ARM64
# define USE_ARM64_NEON_H /* unusual header name in this case */
# endif
# endif
#endif
#if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA256
# undef HW_SHA256
# define HW_SHA256 HW_SHA256_NONE
#endif
/*
* The actual query function that asks if hardware acceleration is
* available.
*/
static bool sha256_hw_available(void);
/*
* The top-level selection function, caching the results of
* sha256_hw_available() so it only has to run once.
*/
static bool sha256_hw_available_cached(void)
{
static bool initialised = false;
static bool hw_available;
if (!initialised) {
hw_available = sha256_hw_available();
initialised = true;
}
return hw_available;
}
static ssh_hash *sha256_select(const ssh_hashalg *alg)
{
const ssh_hashalg *real_alg =
sha256_hw_available_cached() ? &ssh_sha256_hw : &ssh_sha256_sw;
return ssh_hash_new(real_alg);
}
const ssh_hashalg ssh_sha256 = {
sha256_select, NULL, NULL, NULL,
32, 64, HASHALG_NAMES_ANNOTATED("SHA-256", "dummy selector vtable"),
};
/* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
static const uint32_t sha256_initial_state[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
};
static const uint32_t sha256_round_constants[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
#define SHA256_ROUNDS 64
typedef struct sha256_block sha256_block;
struct sha256_block {
uint8_t block[64];
size_t used;
uint64_t len;
};
static inline void sha256_block_setup(sha256_block *blk)
{
blk->used = 0;
blk->len = 0;
}
static inline bool sha256_block_write(
sha256_block *blk, const void **vdata, size_t *len)
{
size_t blkleft = sizeof(blk->block) - blk->used;
size_t chunk = *len < blkleft ? *len : blkleft;
const uint8_t *p = *vdata;
memcpy(blk->block + blk->used, p, chunk);
*vdata = p + chunk;
*len -= chunk;
blk->used += chunk;
blk->len += chunk;
if (blk->used == sizeof(blk->block)) {
blk->used = 0;
return true;
}
return false;
}
static inline void sha256_block_pad(sha256_block *blk, BinarySink *bs)
{
uint64_t final_len = blk->len << 3;
size_t pad = 1 + (63 & (55 - blk->used));
put_byte(bs, 0x80);
for (size_t i = 1; i < pad; i++)
put_byte(bs, 0);
put_uint64(bs, final_len);
assert(blk->used == 0 && "Should have exactly hit a block boundary");
}
/* ----------------------------------------------------------------------
* Software implementation of SHA-256.
*/
static inline uint32_t ror(uint32_t x, unsigned y)
{
return (x << (31 & -y)) | (x >> (31 & y));
}
static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
{
return if0 ^ (ctrl & (if1 ^ if0));
}
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static inline uint32_t Sigma_0(uint32_t x)
{
return ror(x,2) ^ ror(x,13) ^ ror(x,22);
}
static inline uint32_t Sigma_1(uint32_t x)
{
return ror(x,6) ^ ror(x,11) ^ ror(x,25);
}
static inline uint32_t sigma_0(uint32_t x)
{
return ror(x,7) ^ ror(x,18) ^ (x >> 3);
}
static inline uint32_t sigma_1(uint32_t x)
{
return ror(x,17) ^ ror(x,19) ^ (x >> 10);
}
static inline void sha256_sw_round(
unsigned round_index, const uint32_t *schedule,
uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
uint32_t *e, uint32_t *f, uint32_t *g, uint32_t *h)
{
uint32_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) +
sha256_round_constants[round_index] + schedule[round_index];
uint32_t t2 = Sigma_0(*a) + Maj(*a,*b,*c);
*d += t1;
*h = t1 + t2;
}
static void sha256_sw_block(uint32_t *core, const uint8_t *block)
{
uint32_t w[SHA256_ROUNDS];
uint32_t a,b,c,d,e,f,g,h;
for (size_t t = 0; t < 16; t++)
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
for (size_t t = 16; t < SHA256_ROUNDS; t++)
w[t] = sigma_1(w[t-2]) + w[t-7] + sigma_0(w[t-15]) + w[t-16];
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4]; f = core[5]; g = core[6]; h = core[7];
for (size_t t = 0; t < SHA256_ROUNDS; t += 8) {
sha256_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h);
sha256_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g);
sha256_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f);
sha256_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e);
sha256_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d);
sha256_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c);
sha256_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b);
sha256_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a);
}
core[0] += a; core[1] += b; core[2] += c; core[3] += d;
core[4] += e; core[5] += f; core[6] += g; core[7] += h;
smemclr(w, sizeof(w));
}
typedef struct sha256_sw {
uint32_t core[8];
sha256_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha256_sw;
static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha256_sw_new(const ssh_hashalg *alg)
{
sha256_sw *s = snew(sha256_sw);
memcpy(s->core, sha256_initial_state, sizeof(s->core));
sha256_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha256_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha256_sw_copy(ssh_hash *hash)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
sha256_sw *copy = snew(sha256_sw);
memcpy(copy, s, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha256_sw_free(ssh_hash *hash)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha256_sw *s = BinarySink_DOWNCAST(bs, sha256_sw);
while (len > 0)
if (sha256_block_write(&s->blk, &vp, &len))
sha256_sw_block(s->core, s->blk.block);
}
static void sha256_sw_final(ssh_hash *hash, uint8_t *digest)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
sha256_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < 8; i++)
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
sha256_sw_free(hash);
}
const ssh_hashalg ssh_sha256_sw = {
sha256_sw_new, sha256_sw_copy, sha256_sw_final, sha256_sw_free,
32, 64, HASHALG_NAMES_ANNOTATED("SHA-256", "unaccelerated"),
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-256 using x86 SHA-NI.
*/
#if HW_SHA256 == HW_SHA256_NI
/*
* Set target architecture for Clang and GCC
*/
#if !defined(__clang__) && defined(__GNUC__)
# pragma GCC target("sha")
# pragma GCC target("sse4.1")
#endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else
# define FUNC_ISA
#endif
#include <wmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h>
#endif
#if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h>
#define GET_CPU_ID_0(out) \
__cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
#define GET_CPU_ID_7(out) \
__cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
#else
#define GET_CPU_ID_0(out) __cpuid(out, 0)
#define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
#endif
static bool sha256_hw_available(void)
{
unsigned int CPUInfo[4];
GET_CPU_ID_0(CPUInfo);
if (CPUInfo[0] < 7)
return false;
GET_CPU_ID_7(CPUInfo);
return CPUInfo[1] & (1 << 29); /* Check SHA */
}
/* SHA256 implementation using new instructions
The code is based on Jeffrey Walton's SHA256 implementation:
https://github.com/noloader/SHA-Intrinsics
*/
FUNC_ISA
static inline void sha256_ni_block(__m128i *core, const uint8_t *p)
{
__m128i STATE0, STATE1;
__m128i MSG, TMP;
__m128i MSG0, MSG1, MSG2, MSG3;
const __m128i *block = (const __m128i *)p;
const __m128i MASK = _mm_set_epi64x(
0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
/* Load initial values */
STATE0 = core[0];
STATE1 = core[1];
/* Rounds 0-3 */
MSG = _mm_loadu_si128(block);
MSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128(block + 1);
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128(block + 2);
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128(block + 3);
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 16-19 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 20-23 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 24-27 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 28-31 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 32-35 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 36-39 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 40-43 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 44-47 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP);
MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 48-51 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP);
MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 52-55 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP);
MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 56-59 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP);
MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 60-63 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Combine state */
core[0] = _mm_add_epi32(STATE0, core[0]);
core[1] = _mm_add_epi32(STATE1, core[1]);
}
typedef struct sha256_ni {
/*
* These two vectors store the 8 words of the SHA-256 state, but
* not in the same order they appear in the spec: the first word
* holds A,B,E,F and the second word C,D,G,H.
*/
__m128i core[2];
sha256_block blk;
void *pointer_to_free;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha256_ni;
static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len);
static sha256_ni *sha256_ni_alloc(void)
{
/*
* The __m128i variables in the context structure need to be
* 16-byte aligned, but not all malloc implementations that this
* code has to work with will guarantee to return a 16-byte
* aligned pointer. So we over-allocate, manually realign the
* pointer ourselves, and store the original one inside the
* context so we know how to free it later.
*/
void *allocation = smalloc(sizeof(sha256_ni) + 15);
uintptr_t alloc_address = (uintptr_t)allocation;
uintptr_t aligned_address = (alloc_address + 15) & ~15;
sha256_ni *s = (sha256_ni *)aligned_address;
s->pointer_to_free = allocation;
return s;
}
FUNC_ISA static ssh_hash *sha256_ni_new(const ssh_hashalg *alg)
{
if (!sha256_hw_available_cached())
return NULL;
sha256_ni *s = sha256_ni_alloc();
/* Initialise the core vectors in their storage order */
s->core[0] = _mm_set_epi64x(
0x6a09e667bb67ae85ULL, 0x510e527f9b05688cULL);
s->core[1] = _mm_set_epi64x(
0x3c6ef372a54ff53aULL, 0x1f83d9ab5be0cd19ULL);
sha256_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha256_ni_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha256_ni_copy(ssh_hash *hash)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
sha256_ni *copy = sha256_ni_alloc();
void *ptf_save = copy->pointer_to_free;
*copy = *s; /* structure copy */
copy->pointer_to_free = ptf_save;
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha256_ni_free(ssh_hash *hash)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
void *ptf = s->pointer_to_free;
smemclr(s, sizeof(*s));
sfree(ptf);
}
static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len)
{
sha256_ni *s = BinarySink_DOWNCAST(bs, sha256_ni);
while (len > 0)
if (sha256_block_write(&s->blk, &vp, &len))
sha256_ni_block(s->core, s->blk.block);
}
FUNC_ISA static void sha256_ni_final(ssh_hash *hash, uint8_t *digest)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
sha256_block_pad(&s->blk, BinarySink_UPCAST(s));
/* Rearrange the words into the output order */
__m128i feba = _mm_shuffle_epi32(s->core[0], 0x1B);
__m128i dchg = _mm_shuffle_epi32(s->core[1], 0xB1);
__m128i dcba = _mm_blend_epi16(feba, dchg, 0xF0);
__m128i hgfe = _mm_alignr_epi8(dchg, feba, 8);
/* Byte-swap them into the output endianness */
const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
dcba = _mm_shuffle_epi8(dcba, mask);
hgfe = _mm_shuffle_epi8(hgfe, mask);
/* And store them */
__m128i *output = (__m128i *)digest;
_mm_storeu_si128(output, dcba);
_mm_storeu_si128(output+1, hgfe);
sha256_ni_free(hash);
}
const ssh_hashalg ssh_sha256_hw = {
sha256_ni_new, sha256_ni_copy, sha256_ni_final, sha256_ni_free,
32, 64, HASHALG_NAMES_ANNOTATED("SHA-256", "SHA-NI accelerated"),
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-256 using Arm NEON.
*/
#elif HW_SHA256 == HW_SHA256_NEON
/*
* Manually set the target architecture, if we decided above that we
* need to.
*/
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
/*
* A spot of cheating: redefine some ACLE feature macros before
* including arm_neon.h. Otherwise we won't get the SHA intrinsics
* defined by that header, because it will be looking at the settings
* for the whole translation unit rather than the ones we're going to
* put on some particular functions using __attribute__((target)).
*/
#define __ARM_NEON 1
#define __ARM_FEATURE_CRYPTO 1
#define FUNC_ISA __attribute__ ((target("neon,crypto")))
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
#ifndef FUNC_ISA
#define FUNC_ISA
#endif
#ifdef USE_ARM64_NEON_H
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
static bool sha256_hw_available(void)
{
/*
* For Arm, we delegate to a per-platform detection function (see
* explanation in sshaes.c).
*/
return platform_sha256_hw_available();
}
typedef struct sha256_neon_core sha256_neon_core;
struct sha256_neon_core {
uint32x4_t abcd, efgh;
};
FUNC_ISA
static inline uint32x4_t sha256_neon_load_input(const uint8_t *p)
{
return vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(p)));
}
FUNC_ISA
static inline uint32x4_t sha256_neon_schedule_update(
uint32x4_t m4, uint32x4_t m3, uint32x4_t m2, uint32x4_t m1)
{
return vsha256su1q_u32(vsha256su0q_u32(m4, m3), m2, m1);
}
FUNC_ISA
static inline sha256_neon_core sha256_neon_round4(
sha256_neon_core old, uint32x4_t sched, unsigned round)
{
sha256_neon_core new;
uint32x4_t round_input = vaddq_u32(
sched, vld1q_u32(sha256_round_constants + round));
new.abcd = vsha256hq_u32 (old.abcd, old.efgh, round_input);
new.efgh = vsha256h2q_u32(old.efgh, old.abcd, round_input);
return new;
}
FUNC_ISA
static inline void sha256_neon_block(sha256_neon_core *core, const uint8_t *p)
{
uint32x4_t s0, s1, s2, s3;
sha256_neon_core cr = *core;
s0 = sha256_neon_load_input(p);
cr = sha256_neon_round4(cr, s0, 0);
s1 = sha256_neon_load_input(p+16);
cr = sha256_neon_round4(cr, s1, 4);
s2 = sha256_neon_load_input(p+32);
cr = sha256_neon_round4(cr, s2, 8);
s3 = sha256_neon_load_input(p+48);
cr = sha256_neon_round4(cr, s3, 12);
s0 = sha256_neon_schedule_update(s0, s1, s2, s3);
cr = sha256_neon_round4(cr, s0, 16);
s1 = sha256_neon_schedule_update(s1, s2, s3, s0);
cr = sha256_neon_round4(cr, s1, 20);
s2 = sha256_neon_schedule_update(s2, s3, s0, s1);
cr = sha256_neon_round4(cr, s2, 24);
s3 = sha256_neon_schedule_update(s3, s0, s1, s2);
cr = sha256_neon_round4(cr, s3, 28);
s0 = sha256_neon_schedule_update(s0, s1, s2, s3);
cr = sha256_neon_round4(cr, s0, 32);
s1 = sha256_neon_schedule_update(s1, s2, s3, s0);
cr = sha256_neon_round4(cr, s1, 36);
s2 = sha256_neon_schedule_update(s2, s3, s0, s1);
cr = sha256_neon_round4(cr, s2, 40);
s3 = sha256_neon_schedule_update(s3, s0, s1, s2);
cr = sha256_neon_round4(cr, s3, 44);
s0 = sha256_neon_schedule_update(s0, s1, s2, s3);
cr = sha256_neon_round4(cr, s0, 48);
s1 = sha256_neon_schedule_update(s1, s2, s3, s0);
cr = sha256_neon_round4(cr, s1, 52);
s2 = sha256_neon_schedule_update(s2, s3, s0, s1);
cr = sha256_neon_round4(cr, s2, 56);
s3 = sha256_neon_schedule_update(s3, s0, s1, s2);
cr = sha256_neon_round4(cr, s3, 60);
core->abcd = vaddq_u32(core->abcd, cr.abcd);
core->efgh = vaddq_u32(core->efgh, cr.efgh);
}
typedef struct sha256_neon {
sha256_neon_core core;
sha256_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha256_neon;
static void sha256_neon_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha256_neon_new(const ssh_hashalg *alg)
{
if (!sha256_hw_available_cached())
return NULL;
sha256_neon *s = snew(sha256_neon);
s->core.abcd = vld1q_u32(sha256_initial_state);
s->core.efgh = vld1q_u32(sha256_initial_state + 4);
sha256_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha256_neon_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha256_neon_copy(ssh_hash *hash)
{
sha256_neon *s = container_of(hash, sha256_neon, hash);
sha256_neon *copy = snew(sha256_neon);
*copy = *s; /* structure copy */
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha256_neon_free(ssh_hash *hash)
{
sha256_neon *s = container_of(hash, sha256_neon, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha256_neon_write(BinarySink *bs, const void *vp, size_t len)
{
sha256_neon *s = BinarySink_DOWNCAST(bs, sha256_neon);
while (len > 0)
if (sha256_block_write(&s->blk, &vp, &len))
sha256_neon_block(&s->core, s->blk.block);
}
static void sha256_neon_final(ssh_hash *hash, uint8_t *digest)
{
sha256_neon *s = container_of(hash, sha256_neon, hash);
sha256_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev32q_u8(vreinterpretq_u8_u32(s->core.abcd)));
vst1q_u8(digest + 16, vrev32q_u8(vreinterpretq_u8_u32(s->core.efgh)));
sha256_neon_free(hash);
}
const ssh_hashalg ssh_sha256_hw = {
sha256_neon_new, sha256_neon_copy, sha256_neon_final, sha256_neon_free,
32, 64, HASHALG_NAMES_ANNOTATED("SHA-256", "NEON accelerated"),
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-256. In this
* case, sha256_hw_new returns NULL (though it should also never be
* selected by sha256_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA256 == HW_SHA256_NONE
static bool sha256_hw_available(void)
{
return false;
}
static ssh_hash *sha256_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static ssh_hash *sha256_stub_copy(ssh_hash *hash) STUB_BODY
static void sha256_stub_free(ssh_hash *hash) STUB_BODY
static void sha256_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha256_hw = {
sha256_stub_new, sha256_stub_copy, sha256_stub_final, sha256_stub_free,
32, 64, HASHALG_NAMES_ANNOTATED(
"SHA-256", "!NONEXISTENT ACCELERATED VERSION!"),
};
#endif /* HW_SHA256 */