1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/sshmd5.c

356 lines
10 KiB
C
Raw Normal View History

#include <assert.h>
#include "ssh.h"
/*
* MD5 implementation for PuTTY. Written directly from the spec by
* Simon Tatham.
*/
/* ----------------------------------------------------------------------
* Core MD5 algorithm: processes 16-word blocks into a message digest.
*/
#define F(x,y,z) ( ((x) & (y)) | ((~(x)) & (z)) )
#define G(x,y,z) ( ((x) & (z)) | ((~(z)) & (y)) )
#define H(x,y,z) ( (x) ^ (y) ^ (z) )
#define I(x,y,z) ( (y) ^ ( (x) | ~(z) ) )
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
#define subround(f,w,x,y,z,k,s,ti) \
w = x + rol(w + f(x,y,z) + block[k] + ti, s)
static void MD5_Core_Init(MD5_Core_State * s)
{
s->h[0] = 0x67452301;
s->h[1] = 0xefcdab89;
s->h[2] = 0x98badcfe;
s->h[3] = 0x10325476;
}
static void MD5_Block(MD5_Core_State * s, uint32 * block)
{
uint32 a, b, c, d;
a = s->h[0];
b = s->h[1];
c = s->h[2];
d = s->h[3];
subround(F, a, b, c, d, 0, 7, 0xd76aa478);
subround(F, d, a, b, c, 1, 12, 0xe8c7b756);
subround(F, c, d, a, b, 2, 17, 0x242070db);
subround(F, b, c, d, a, 3, 22, 0xc1bdceee);
subround(F, a, b, c, d, 4, 7, 0xf57c0faf);
subround(F, d, a, b, c, 5, 12, 0x4787c62a);
subround(F, c, d, a, b, 6, 17, 0xa8304613);
subround(F, b, c, d, a, 7, 22, 0xfd469501);
subround(F, a, b, c, d, 8, 7, 0x698098d8);
subround(F, d, a, b, c, 9, 12, 0x8b44f7af);
subround(F, c, d, a, b, 10, 17, 0xffff5bb1);
subround(F, b, c, d, a, 11, 22, 0x895cd7be);
subround(F, a, b, c, d, 12, 7, 0x6b901122);
subround(F, d, a, b, c, 13, 12, 0xfd987193);
subround(F, c, d, a, b, 14, 17, 0xa679438e);
subround(F, b, c, d, a, 15, 22, 0x49b40821);
subround(G, a, b, c, d, 1, 5, 0xf61e2562);
subround(G, d, a, b, c, 6, 9, 0xc040b340);
subround(G, c, d, a, b, 11, 14, 0x265e5a51);
subround(G, b, c, d, a, 0, 20, 0xe9b6c7aa);
subround(G, a, b, c, d, 5, 5, 0xd62f105d);
subround(G, d, a, b, c, 10, 9, 0x02441453);
subround(G, c, d, a, b, 15, 14, 0xd8a1e681);
subround(G, b, c, d, a, 4, 20, 0xe7d3fbc8);
subround(G, a, b, c, d, 9, 5, 0x21e1cde6);
subround(G, d, a, b, c, 14, 9, 0xc33707d6);
subround(G, c, d, a, b, 3, 14, 0xf4d50d87);
subround(G, b, c, d, a, 8, 20, 0x455a14ed);
subround(G, a, b, c, d, 13, 5, 0xa9e3e905);
subround(G, d, a, b, c, 2, 9, 0xfcefa3f8);
subround(G, c, d, a, b, 7, 14, 0x676f02d9);
subround(G, b, c, d, a, 12, 20, 0x8d2a4c8a);
subround(H, a, b, c, d, 5, 4, 0xfffa3942);
subround(H, d, a, b, c, 8, 11, 0x8771f681);
subround(H, c, d, a, b, 11, 16, 0x6d9d6122);
subround(H, b, c, d, a, 14, 23, 0xfde5380c);
subround(H, a, b, c, d, 1, 4, 0xa4beea44);
subround(H, d, a, b, c, 4, 11, 0x4bdecfa9);
subround(H, c, d, a, b, 7, 16, 0xf6bb4b60);
subround(H, b, c, d, a, 10, 23, 0xbebfbc70);
subround(H, a, b, c, d, 13, 4, 0x289b7ec6);
subround(H, d, a, b, c, 0, 11, 0xeaa127fa);
subround(H, c, d, a, b, 3, 16, 0xd4ef3085);
subround(H, b, c, d, a, 6, 23, 0x04881d05);
subround(H, a, b, c, d, 9, 4, 0xd9d4d039);
subround(H, d, a, b, c, 12, 11, 0xe6db99e5);
subround(H, c, d, a, b, 15, 16, 0x1fa27cf8);
subround(H, b, c, d, a, 2, 23, 0xc4ac5665);
subround(I, a, b, c, d, 0, 6, 0xf4292244);
subround(I, d, a, b, c, 7, 10, 0x432aff97);
subround(I, c, d, a, b, 14, 15, 0xab9423a7);
subround(I, b, c, d, a, 5, 21, 0xfc93a039);
subround(I, a, b, c, d, 12, 6, 0x655b59c3);
subround(I, d, a, b, c, 3, 10, 0x8f0ccc92);
subround(I, c, d, a, b, 10, 15, 0xffeff47d);
subround(I, b, c, d, a, 1, 21, 0x85845dd1);
subround(I, a, b, c, d, 8, 6, 0x6fa87e4f);
subround(I, d, a, b, c, 15, 10, 0xfe2ce6e0);
subround(I, c, d, a, b, 6, 15, 0xa3014314);
subround(I, b, c, d, a, 13, 21, 0x4e0811a1);
subround(I, a, b, c, d, 4, 6, 0xf7537e82);
subround(I, d, a, b, c, 11, 10, 0xbd3af235);
subround(I, c, d, a, b, 2, 15, 0x2ad7d2bb);
subround(I, b, c, d, a, 9, 21, 0xeb86d391);
s->h[0] += a;
s->h[1] += b;
s->h[2] += c;
s->h[3] += d;
}
/* ----------------------------------------------------------------------
* Outer MD5 algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core MD5 algorithm.
*/
#define BLKSIZE 64
static void MD5_BinarySink_write(BinarySink *bs, const void *data, size_t len);
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
void MD5Init(struct MD5Context *s)
{
MD5_Core_Init(&s->core);
s->blkused = 0;
s->lenhi = s->lenlo = 0;
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
BinarySink_INIT(s, MD5_BinarySink_write);
}
static void MD5_BinarySink_write(BinarySink *bs, const void *data, size_t len)
{
struct MD5Context *s = BinarySink_DOWNCAST(bs, struct MD5Context);
const unsigned char *q = (const unsigned char *)data;
uint32 wordblock[16];
uint32 lenw = len;
int i;
assert(lenw == len);
/*
* Update the length field.
*/
s->lenlo += lenw;
s->lenhi += (s->lenlo < lenw);
if (s->blkused + len < BLKSIZE) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= BLKSIZE) {
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
q += BLKSIZE - s->blkused;
len -= BLKSIZE - s->blkused;
/* Now process the block. Gather bytes little-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32) s->block[i * 4 + 3]) << 24) |
(((uint32) s->block[i * 4 + 2]) << 16) |
(((uint32) s->block[i * 4 + 1]) << 8) |
(((uint32) s->block[i * 4 + 0]) << 0);
}
MD5_Block(&s->core, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void MD5Final(unsigned char output[16], struct MD5Context *s)
{
int i;
unsigned pad;
unsigned char c[64];
uint32 lenhi, lenlo;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
lenlo = (s->lenlo << 3);
memset(c, 0, pad);
c[0] = 0x80;
put_data(s, c, pad);
c[7] = (lenhi >> 24) & 0xFF;
c[6] = (lenhi >> 16) & 0xFF;
c[5] = (lenhi >> 8) & 0xFF;
c[4] = (lenhi >> 0) & 0xFF;
c[3] = (lenlo >> 24) & 0xFF;
c[2] = (lenlo >> 16) & 0xFF;
c[1] = (lenlo >> 8) & 0xFF;
c[0] = (lenlo >> 0) & 0xFF;
put_data(s, c, 8);
for (i = 0; i < 4; i++) {
output[4 * i + 3] = (s->core.h[i] >> 24) & 0xFF;
output[4 * i + 2] = (s->core.h[i] >> 16) & 0xFF;
output[4 * i + 1] = (s->core.h[i] >> 8) & 0xFF;
output[4 * i + 0] = (s->core.h[i] >> 0) & 0xFF;
}
}
void MD5Simple(void const *p, unsigned len, unsigned char output[16])
{
struct MD5Context s;
MD5Init(&s);
put_data(&s, (unsigned char const *)p, len);
MD5Final(output, &s);
smemclr(&s, sizeof(s));
}
/* ----------------------------------------------------------------------
* The above is the MD5 algorithm itself. Now we implement the
* HMAC wrapper on it.
*
* Some of these functions are exported directly, because they are
* useful elsewhere (SOCKS5 CHAP authentication uses HMAC-MD5).
*/
void *hmacmd5_make_context(void *cipher_ctx)
{
return snewn(3, struct MD5Context);
}
void hmacmd5_free_context(void *handle)
{
smemclr(handle, 3*sizeof(struct MD5Context));
sfree(handle);
}
void hmacmd5_key(void *handle, void const *keyv, int len)
{
struct MD5Context *keys = (struct MD5Context *)handle;
unsigned char foo[64];
unsigned char const *key = (unsigned char const *)keyv;
int i;
memset(foo, 0x36, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
MD5Init(&keys[0]);
put_data(&keys[0], foo, 64);
memset(foo, 0x5C, 64);
for (i = 0; i < len && i < 64; i++)
foo[i] ^= key[i];
MD5Init(&keys[1]);
put_data(&keys[1], foo, 64);
smemclr(foo, 64); /* burn the evidence */
}
static void hmacmd5_key_16(void *handle, const void *key)
{
hmacmd5_key(handle, key, 16);
}
static void hmacmd5_start(void *handle)
{
struct MD5Context *keys = (struct MD5Context *)handle;
keys[2] = keys[0]; /* structure copy */
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
BinarySink_COPIED(&keys[2]);
}
static BinarySink *hmacmd5_sink(void *handle)
{
struct MD5Context *keys = (struct MD5Context *)handle;
return BinarySink_UPCAST(&keys[2]);
}
static void hmacmd5_genresult(void *handle, unsigned char *hmac)
{
struct MD5Context *keys = (struct MD5Context *)handle;
struct MD5Context s;
unsigned char intermediate[16];
s = keys[2]; /* structure copy */
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
BinarySink_COPIED(&s);
MD5Final(intermediate, &s);
s = keys[1]; /* structure copy */
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
BinarySink_COPIED(&s);
put_data(&s, intermediate, 16);
MD5Final(hmac, &s);
}
static int hmacmd5_verresult(void *handle, unsigned char const *hmac)
{
unsigned char correct[16];
hmacmd5_genresult(handle, correct);
return smemeq(correct, hmac, 16);
}
static void hmacmd5_do_hmac_internal(void *handle,
unsigned char const *blk, int len,
unsigned char const *blk2, int len2,
unsigned char *hmac)
{
BinarySink *bs = hmacmd5_sink(handle);
hmacmd5_start(handle);
put_data(bs, blk, len);
if (blk2) put_data(bs, blk2, len2);
hmacmd5_genresult(handle, hmac);
}
void hmacmd5_do_hmac(void *handle, unsigned char const *blk, int len,
unsigned char *hmac)
{
hmacmd5_do_hmac_internal(handle, blk, len, NULL, 0, hmac);
}
static void hmacmd5_do_hmac_ssh(void *handle, unsigned char const *blk, int len,
unsigned long seq, unsigned char *hmac)
{
unsigned char seqbuf[16];
PUT_32BIT_MSB_FIRST(seqbuf, seq);
hmacmd5_do_hmac_internal(handle, seqbuf, 4, blk, len, hmac);
}
static void hmacmd5_generate(void *handle, void *vblk, int len,
unsigned long seq)
{
unsigned char *blk = (unsigned char *)vblk;
hmacmd5_do_hmac_ssh(handle, blk, len, seq, blk + len);
}
static int hmacmd5_verify(void *handle, const void *vblk, int len,
unsigned long seq)
{
const unsigned char *blk = (const unsigned char *)vblk;
unsigned char correct[16];
hmacmd5_do_hmac_ssh(handle, blk, len, seq, correct);
return smemeq(correct, blk + len, 16);
}
const struct ssh_mac ssh_hmac_md5 = {
hmacmd5_make_context, hmacmd5_free_context, hmacmd5_key_16,
hmacmd5_generate, hmacmd5_verify,
hmacmd5_start, hmacmd5_sink, hmacmd5_genresult, hmacmd5_verresult,
"hmac-md5", "hmac-md5-etm@openssh.com",
16, 16,
"HMAC-MD5"
};