Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
/*
|
|
|
|
* Implement the "session" channel type for the SSH server.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
#include "ssh.h"
|
2021-04-22 16:58:40 +00:00
|
|
|
#include "channel.h"
|
|
|
|
#include "server.h"
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
#include "sftp.h"
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
struct agentfwd {
|
|
|
|
ConnectionLayer *cl;
|
|
|
|
Socket *socket;
|
|
|
|
Plug plug;
|
|
|
|
};
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
typedef struct sesschan {
|
|
|
|
SshChannel *c;
|
|
|
|
|
|
|
|
LogContext *parent_logctx, *child_logctx;
|
|
|
|
Conf *conf;
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
const SftpServerVtable *sftpserver_vt;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
LogPolicy logpolicy;
|
|
|
|
Seat seat;
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool want_pty;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
struct ssh_ttymodes ttymodes;
|
|
|
|
int wc, hc, wp, hp;
|
|
|
|
strbuf *termtype;
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool ignoring_input;
|
|
|
|
bool seen_eof, seen_exit;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
Plug xfwd_plug;
|
|
|
|
int n_x11_sockets;
|
|
|
|
Socket *x11_sockets[MAX_X11_SOCKETS];
|
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
agentfwd *agent;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
Backend *backend;
|
|
|
|
|
|
|
|
bufchain subsys_input;
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
SftpServer *sftpsrv;
|
2018-10-20 10:19:17 +00:00
|
|
|
ScpServer *scpsrv;
|
2019-03-30 07:27:26 +00:00
|
|
|
const SshServerConfig *ssc;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
Channel chan;
|
|
|
|
} sesschan;
|
|
|
|
|
|
|
|
static void sesschan_free(Channel *chan);
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sesschan_send(
|
|
|
|
Channel *chan, bool is_stderr, const void *, size_t);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
static void sesschan_send_eof(Channel *chan);
|
|
|
|
static char *sesschan_log_close_msg(Channel *chan);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_want_close(Channel *, bool, bool);
|
|
|
|
static void sesschan_set_input_wanted(Channel *chan, bool wanted);
|
|
|
|
static bool sesschan_run_shell(Channel *chan);
|
|
|
|
static bool sesschan_run_command(Channel *chan, ptrlen command);
|
|
|
|
static bool sesschan_run_subsystem(Channel *chan, ptrlen subsys);
|
|
|
|
static bool sesschan_enable_x11_forwarding(
|
|
|
|
Channel *chan, bool oneshot, ptrlen authproto, ptrlen authdata,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
unsigned screen_number);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_enable_agent_forwarding(Channel *chan);
|
|
|
|
static bool sesschan_allocate_pty(
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
Channel *chan, ptrlen termtype, unsigned width, unsigned height,
|
|
|
|
unsigned pixwidth, unsigned pixheight, struct ssh_ttymodes modes);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_set_env(Channel *chan, ptrlen var, ptrlen value);
|
|
|
|
static bool sesschan_send_break(Channel *chan, unsigned length);
|
|
|
|
static bool sesschan_send_signal(Channel *chan, ptrlen signame);
|
|
|
|
static bool sesschan_change_window_size(
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
Channel *chan, unsigned width, unsigned height,
|
|
|
|
unsigned pixwidth, unsigned pixheight);
|
|
|
|
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
static const ChannelVtable sesschan_channelvt = {
|
|
|
|
.free = sesschan_free,
|
|
|
|
.open_confirmation = chan_remotely_opened_confirmation,
|
|
|
|
.open_failed = chan_remotely_opened_failure,
|
|
|
|
.send = sesschan_send,
|
|
|
|
.send_eof = sesschan_send_eof,
|
|
|
|
.set_input_wanted = sesschan_set_input_wanted,
|
|
|
|
.log_close_msg = sesschan_log_close_msg,
|
|
|
|
.want_close = sesschan_want_close,
|
|
|
|
.rcvd_exit_status = chan_no_exit_status,
|
|
|
|
.rcvd_exit_signal = chan_no_exit_signal,
|
|
|
|
.rcvd_exit_signal_numeric = chan_no_exit_signal_numeric,
|
|
|
|
.run_shell = sesschan_run_shell,
|
|
|
|
.run_command = sesschan_run_command,
|
|
|
|
.run_subsystem = sesschan_run_subsystem,
|
|
|
|
.enable_x11_forwarding = sesschan_enable_x11_forwarding,
|
|
|
|
.enable_agent_forwarding = sesschan_enable_agent_forwarding,
|
|
|
|
.allocate_pty = sesschan_allocate_pty,
|
|
|
|
.set_env = sesschan_set_env,
|
|
|
|
.send_break = sesschan_send_break,
|
|
|
|
.send_signal = sesschan_send_signal,
|
|
|
|
.change_window_size = sesschan_change_window_size,
|
|
|
|
.request_response = chan_no_request_response,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
};
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sftp_chan_send(
|
|
|
|
Channel *chan, bool is_stderr, const void *, size_t);
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
static void sftp_chan_send_eof(Channel *chan);
|
|
|
|
static char *sftp_log_close_msg(Channel *chan);
|
|
|
|
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
static const ChannelVtable sftp_channelvt = {
|
|
|
|
.free = sesschan_free,
|
|
|
|
.open_confirmation = chan_remotely_opened_confirmation,
|
|
|
|
.open_failed = chan_remotely_opened_failure,
|
|
|
|
.send = sftp_chan_send,
|
|
|
|
.send_eof = sftp_chan_send_eof,
|
|
|
|
.set_input_wanted = sesschan_set_input_wanted,
|
|
|
|
.log_close_msg = sftp_log_close_msg,
|
|
|
|
.want_close = chan_default_want_close,
|
|
|
|
.rcvd_exit_status = chan_no_exit_status,
|
|
|
|
.rcvd_exit_signal = chan_no_exit_signal,
|
|
|
|
.rcvd_exit_signal_numeric = chan_no_exit_signal_numeric,
|
|
|
|
.run_shell = chan_no_run_shell,
|
|
|
|
.run_command = chan_no_run_command,
|
|
|
|
.run_subsystem = chan_no_run_subsystem,
|
|
|
|
.enable_x11_forwarding = chan_no_enable_x11_forwarding,
|
|
|
|
.enable_agent_forwarding = chan_no_enable_agent_forwarding,
|
|
|
|
.allocate_pty = chan_no_allocate_pty,
|
|
|
|
.set_env = chan_no_set_env,
|
|
|
|
.send_break = chan_no_send_break,
|
|
|
|
.send_signal = chan_no_send_signal,
|
|
|
|
.change_window_size = chan_no_change_window_size,
|
|
|
|
.request_response = chan_no_request_response,
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
};
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t scp_chan_send(
|
|
|
|
Channel *chan, bool is_stderr, const void *, size_t);
|
2018-10-20 10:19:17 +00:00
|
|
|
static void scp_chan_send_eof(Channel *chan);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static void scp_set_input_wanted(Channel *chan, bool wanted);
|
2018-10-20 10:19:17 +00:00
|
|
|
static char *scp_log_close_msg(Channel *chan);
|
|
|
|
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
static const ChannelVtable scp_channelvt = {
|
|
|
|
.free = sesschan_free,
|
|
|
|
.open_confirmation = chan_remotely_opened_confirmation,
|
|
|
|
.open_failed = chan_remotely_opened_failure,
|
|
|
|
.send = scp_chan_send,
|
|
|
|
.send_eof = scp_chan_send_eof,
|
|
|
|
.set_input_wanted = scp_set_input_wanted,
|
|
|
|
.log_close_msg = scp_log_close_msg,
|
|
|
|
.want_close = chan_default_want_close,
|
|
|
|
.rcvd_exit_status = chan_no_exit_status,
|
|
|
|
.rcvd_exit_signal = chan_no_exit_signal,
|
|
|
|
.rcvd_exit_signal_numeric = chan_no_exit_signal_numeric,
|
|
|
|
.run_shell = chan_no_run_shell,
|
|
|
|
.run_command = chan_no_run_command,
|
|
|
|
.run_subsystem = chan_no_run_subsystem,
|
|
|
|
.enable_x11_forwarding = chan_no_enable_x11_forwarding,
|
|
|
|
.enable_agent_forwarding = chan_no_enable_agent_forwarding,
|
|
|
|
.allocate_pty = chan_no_allocate_pty,
|
|
|
|
.set_env = chan_no_set_env,
|
|
|
|
.send_break = chan_no_send_break,
|
|
|
|
.send_signal = chan_no_send_signal,
|
|
|
|
.change_window_size = chan_no_change_window_size,
|
|
|
|
.request_response = chan_no_request_response,
|
2018-10-20 10:19:17 +00:00
|
|
|
};
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
static void sesschan_eventlog(LogPolicy *lp, const char *event) {}
|
|
|
|
static void sesschan_logging_error(LogPolicy *lp, const char *event) {}
|
|
|
|
static int sesschan_askappend(
|
|
|
|
LogPolicy *lp, Filename *filename,
|
|
|
|
void (*callback)(void *ctx, int result), void *ctx) { return 2; }
|
|
|
|
|
|
|
|
static const LogPolicyVtable sesschan_logpolicy_vt = {
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.eventlog = sesschan_eventlog,
|
|
|
|
.askappend = sesschan_askappend,
|
|
|
|
.logging_error = sesschan_logging_error,
|
|
|
|
.verbose = null_lp_verbose_no,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
};
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sesschan_seat_output(
|
2021-09-16 13:46:49 +00:00
|
|
|
Seat *, SeatOutputType type, const void *, size_t);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_seat_eof(Seat *);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
static void sesschan_notify_remote_exit(Seat *seat);
|
|
|
|
static void sesschan_connection_fatal(Seat *seat, const char *message);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_get_window_pixel_size(Seat *seat, int *w, int *h);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
static const SeatVtable sesschan_seat_vt = {
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.output = sesschan_seat_output,
|
|
|
|
.eof = sesschan_seat_eof,
|
New Seat callback, seat_sent().
This is used to notify the Seat that some data has been cleared from
the backend's outgoing data buffer. In other words, it notifies the
Seat that it might be worth calling backend_sendbuffer() again.
We've never needed this before, because until now, Seats have always
been the 'main program' part of the application, meaning they were
also in control of the event loop. So they've been able to call
backend_sendbuffer() proactively, every time they go round the event
loop, instead of having to wait for a callback.
But now, the SSH proxy is the first example of a Seat without
privileged access to the event loop, so it has no way to find out that
the backend's sendbuffer has got smaller. And without that, it can't
pass that notification on to plug_sent, to unblock in turn whatever
the proxied connection might have been waiting to send.
In fact, before this commit, sshproxy.c never called plug_sent at all.
As a result, large data uploads over an SSH jump host would hang
forever as soon as the outgoing buffer filled up for the first time:
the main backend (to which sshproxy.c was acting as a Socket) would
carefully stop filling up the buffer, and then never receive the call
to plug_sent that would cause it to start again.
The new callback is ignored everywhere except in sshproxy.c. It might
be a good idea to remove backend_sendbuffer() entirely and convert all
previous uses of it into non-empty implementations of this callback,
so that we've only got one system; but for the moment, I haven't done
that.
2021-06-27 12:52:48 +00:00
|
|
|
.sent = nullseat_sent,
|
2021-10-30 16:06:00 +00:00
|
|
|
.banner = nullseat_banner,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.get_userpass_input = nullseat_get_userpass_input,
|
2021-09-12 10:48:42 +00:00
|
|
|
.notify_session_started = nullseat_notify_session_started,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.notify_remote_exit = sesschan_notify_remote_exit,
|
2021-05-22 11:47:51 +00:00
|
|
|
.notify_remote_disconnect = nullseat_notify_remote_disconnect,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.connection_fatal = sesschan_connection_fatal,
|
2022-09-13 07:49:38 +00:00
|
|
|
.nonfatal = nullseat_nonfatal,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.update_specials_menu = nullseat_update_specials_menu,
|
|
|
|
.get_ttymode = nullseat_get_ttymode,
|
|
|
|
.set_busy_status = nullseat_set_busy_status,
|
Reorganise host key checking and confirmation.
Previously, checking the host key against the persistent cache managed
by the storage.h API was done as part of the seat_verify_ssh_host_key
method, i.e. separately by each Seat.
Now that check is done by verify_ssh_host_key(), which is a new
function in ssh/common.c that centralises all the parts of host key
checking that don't need an interactive prompt. It subsumes the
previous verify_ssh_manual_host_key() that checked against the Conf,
and it does the check against the storage API that each Seat was
previously doing separately. If it can't confirm or definitively
reject the host key by itself, _then_ it calls out to the Seat, once
an interactive prompt is definitely needed.
The main point of doing this is so that when SshProxy forwards a Seat
call from the proxy SSH connection to the primary Seat, it won't print
an announcement of which connection is involved unless it's actually
going to do something interactive. (Not that we're printing those
announcements _yet_ anyway, but this is a piece of groundwork that
works towards doing so.)
But while I'm at it, I've also taken the opportunity to clean things
up a bit by renaming functions sensibly. Previously we had three very
similarly named functions verify_ssh_manual_host_key(), SeatVtable's
'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now
the Seat method is called 'confirm' rather than 'verify' (since its
job is now always to print an interactive prompt, so it looks more
like the other confirm_foo methods), and the storage.h function is
called check_stored_host_key(), which goes better with store_host_key
and avoids having too many functions with similar names. And the
'manual' function is subsumed into the new centralised code, so
there's now just *one* host key function with 'verify' in the name.
Several functions are reindented in this commit. Best viewed with
whitespace changes ignored.
2021-10-25 17:12:17 +00:00
|
|
|
.confirm_ssh_host_key = nullseat_confirm_ssh_host_key,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.confirm_weak_crypto_primitive = nullseat_confirm_weak_crypto_primitive,
|
|
|
|
.confirm_weak_cached_hostkey = nullseat_confirm_weak_cached_hostkey,
|
Centralise most details of host-key prompting.
The text of the host key warnings was replicated in three places: the
Windows rc file, the GTK dialog setup function, and the console.c
shared between both platforms' CLI tools. Now it lives in just one
place, namely ssh/common.c where the rest of the centralised host-key
checking is done, so it'll be easier to adjust the wording in future.
This comes with some extra automation. Paragraph wrapping is no longer
done by hand in any version of these prompts. (Previously we let GTK
do the wrapping on GTK, but on Windows the resource file contained a
bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped
terminal messages.) And the dialog heights in Windows are determined
automatically based on the amount of stuff in the window.
The main idea of all this is that it'll be easier to set up more
elaborate kinds of host key prompt that deal with certificates (if,
e.g., a server sends us a certified host key which we don't trust the
CA for). But there are side benefits of this refactoring too: each
tool now reliably inserts its own appname in the prompts, and also, on
Windows the entire prompt text is copy-pastable.
Details of implementation: there's a new type SeatDialogText which
holds a set of (type, string) pairs describing the contents of a
prompt. Type codes distinguish ordinary text paragraphs, paragraphs to
be displayed prominently (like key fingerprints), the extra-bold scary
title at the top of the 'host key changed' version of the dialog, and
the various information that lives in the subsidiary 'more info' box.
ssh/common.c constructs this, and passes it to the Seat to present the
actual prompt.
In order to deal with the different UI for answering the prompt, I've
added an extra Seat method 'prompt_descriptions' which returns some
snippets of text to interpolate into the messages. ssh/common.c calls
that while it's still constructing the text, and incorporates the
resulting snippets into the SeatDialogText.
For the moment, this refactoring only affects the host key prompts.
The warnings about outmoded crypto are still done the old-fashioned
way; they probably ought to be similarly refactored to use this new
SeatDialogText system, but it's not immediately critical for the
purpose I have right now.
2022-07-07 16:25:15 +00:00
|
|
|
.prompt_descriptions = nullseat_prompt_descriptions,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.is_utf8 = nullseat_is_never_utf8,
|
|
|
|
.echoedit_update = nullseat_echoedit_update,
|
|
|
|
.get_x_display = nullseat_get_x_display,
|
|
|
|
.get_windowid = nullseat_get_windowid,
|
|
|
|
.get_window_pixel_size = sesschan_get_window_pixel_size,
|
|
|
|
.stripctrl_new = nullseat_stripctrl_new,
|
|
|
|
.set_trust_status = nullseat_set_trust_status,
|
2021-09-12 08:52:46 +00:00
|
|
|
.can_set_trust_status = nullseat_can_set_trust_status_no,
|
New Seat query, has_mixed_input_stream().
(TL;DR: to suppress redundant 'Press Return to begin session' prompts
in between hops of a jump-host configuration, in Plink.)
This new query method directly asks the Seat the question: is the same
stream of input used to provide responses to interactive login
prompts, and the session input provided after login concludes?
It's used to suppress the last-ditch anti-spoofing defence in Plink of
interactively asking 'Access granted. Press Return to begin session',
on the basis that any such spoofing attack works by confusing the user
about what's a legit login prompt before the session begins and what's
sent by the server after the main session begins - so if those two
things take input from different places, the user can't be confused.
This doesn't change the existing behaviour of Plink, which was already
suppressing the antispoof prompt in cases where its standard input was
redirected from something other than a terminal. But previously it was
doing it within the can_set_trust_status() seat query, and I've now
moved it out into a separate query function.
The reason why these need to be separate is for SshProxy, which needs
to give an unusual combination of answers when run inside Plink. For
can_set_trust_status(), it needs to return whatever the parent Seat
returns, so that all the login prompts for a string of proxy
connections in session will be antispoofed the same way. But you only
want that final 'Access granted' prompt to happen _once_, after all
the proxy connection setup phases are done, because up until then
you're still in the safe hands of PuTTY itself presenting an unbroken
sequence of legit login prompts (even if they come from a succession
of different servers). Hence, SshProxy unconditionally returns 'no' to
the query of whether it has a single mixed input stream, because
indeed, it never does - for purposes of session input it behaves like
an always-redirected Plink, no matter what kind of real Seat it ends
up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
|
|
|
.has_mixed_input_stream = nullseat_has_mixed_input_stream_no,
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.verbose = nullseat_verbose_no,
|
|
|
|
.interactive = nullseat_interactive_no,
|
|
|
|
.get_cursor_position = nullseat_get_cursor_position,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
};
|
|
|
|
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
Channel *sesschan_new(SshChannel *c, LogContext *logctx,
|
2019-03-30 07:27:26 +00:00
|
|
|
const SftpServerVtable *sftpserver_vt,
|
|
|
|
const SshServerConfig *ssc)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = snew(sesschan);
|
|
|
|
memset(sess, 0, sizeof(sesschan));
|
|
|
|
|
|
|
|
sess->c = c;
|
|
|
|
sess->chan.vt = &sesschan_channelvt;
|
|
|
|
sess->chan.initial_fixed_window_size = 0;
|
|
|
|
sess->parent_logctx = logctx;
|
2019-03-30 07:27:26 +00:00
|
|
|
sess->ssc = ssc;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
/* Start with a completely default Conf */
|
|
|
|
sess->conf = conf_new();
|
|
|
|
load_open_settings(NULL, sess->conf);
|
|
|
|
|
2022-01-22 15:38:53 +00:00
|
|
|
/* Set close-on-exit = true to suppress pty.c's "[pterm: process
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
* terminated with status x]" message */
|
|
|
|
conf_set_int(sess->conf, CONF_close_on_exit, FORCE_ON);
|
|
|
|
|
|
|
|
sess->seat.vt = &sesschan_seat_vt;
|
|
|
|
sess->logpolicy.vt = &sesschan_logpolicy_vt;
|
|
|
|
sess->child_logctx = log_init(&sess->logpolicy, sess->conf);
|
|
|
|
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
sess->sftpserver_vt = sftpserver_vt;
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
bufchain_init(&sess->subsys_input);
|
|
|
|
|
|
|
|
return &sess->chan;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_free(Channel *chan)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
delete_callbacks_for_context(sess);
|
|
|
|
conf_free(sess->conf);
|
|
|
|
if (sess->backend)
|
|
|
|
backend_free(sess->backend);
|
|
|
|
bufchain_clear(&sess->subsys_input);
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
if (sess->sftpsrv)
|
|
|
|
sftpsrv_free(sess->sftpsrv);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
for (i = 0; i < sess->n_x11_sockets; i++)
|
|
|
|
sk_close(sess->x11_sockets[i]);
|
2020-12-23 22:26:44 +00:00
|
|
|
if (sess->agent)
|
|
|
|
agentfwd_free(sess->agent);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
sfree(sess);
|
|
|
|
}
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sesschan_send(Channel *chan, bool is_stderr,
|
|
|
|
const void *data, size_t length)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (!sess->backend || sess->ignoring_input)
|
|
|
|
return 0;
|
|
|
|
|
2021-09-12 08:52:46 +00:00
|
|
|
backend_send(sess->backend, data, length);
|
|
|
|
return backend_sendbuffer(sess->backend);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_send_eof(Channel *chan)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
if (sess->backend)
|
|
|
|
backend_special(sess->backend, SS_EOF, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *sesschan_log_close_msg(Channel *chan)
|
|
|
|
{
|
|
|
|
return dupstr("Session channel closed");
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static void sesschan_set_input_wanted(Channel *chan, bool wanted)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
2022-08-21 11:58:01 +00:00
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
/* Request the back end to resume sending input, if it had become
|
|
|
|
* throttled by the channel window shortening */
|
|
|
|
if (wanted && sess->backend)
|
|
|
|
backend_unthrottle(sess->backend, 0);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_start_backend(sesschan *sess, const char *cmd)
|
|
|
|
{
|
2019-03-31 21:09:54 +00:00
|
|
|
/*
|
|
|
|
* List of environment variables that we should not pass through
|
|
|
|
* from the login session Uppity was run in (which, it being a
|
|
|
|
* test server, there will usually be one of). These variables
|
|
|
|
* will be set as part of X or agent forwarding, and shouldn't be
|
|
|
|
* confusingly set in the absence of that.
|
|
|
|
*
|
2022-01-22 15:38:53 +00:00
|
|
|
* (DISPLAY must also be cleared, but pty.c will do that anyway
|
2019-03-31 21:09:54 +00:00
|
|
|
* when our get_x_display method returns NULL.)
|
|
|
|
*/
|
|
|
|
static const char *const env_to_unset[] = {
|
|
|
|
"XAUTHORITY", "SSH_AUTH_SOCK", "SSH_AGENT_PID",
|
|
|
|
NULL /* terminator */
|
|
|
|
};
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
sess->backend = pty_backend_create(
|
|
|
|
&sess->seat, sess->child_logctx, sess->conf, NULL, cmd,
|
2019-03-31 21:12:42 +00:00
|
|
|
sess->ttymodes, !sess->want_pty, sess->ssc->session_starting_dir,
|
|
|
|
env_to_unset);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
backend_size(sess->backend, sess->wc, sess->hc);
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_run_shell(Channel *chan)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (sess->backend)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
sesschan_start_backend(sess, NULL);
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_run_command(Channel *chan, ptrlen command)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (sess->backend)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2018-10-20 10:19:17 +00:00
|
|
|
/* FIXME: make this possible to configure off */
|
|
|
|
if ((sess->scpsrv = scp_recognise_exec(sess->c, sess->sftpserver_vt,
|
|
|
|
command)) != NULL) {
|
|
|
|
sess->chan.vt = &scp_channelvt;
|
|
|
|
logevent(sess->parent_logctx, "Starting built-in SCP server");
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
2018-10-20 10:19:17 +00:00
|
|
|
}
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
char *command_str = mkstr(command);
|
|
|
|
sesschan_start_backend(sess, command_str);
|
|
|
|
sfree(command_str);
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_run_subsystem(Channel *chan, ptrlen subsys)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (ptrlen_eq_string(subsys, "sftp") && sess->sftpserver_vt) {
|
|
|
|
sess->sftpsrv = sftpsrv_new(sess->sftpserver_vt);
|
|
|
|
sess->chan.vt = &sftp_channelvt;
|
|
|
|
logevent(sess->parent_logctx, "Starting built-in SFTP subsystem");
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
}
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
2024-06-26 07:29:39 +00:00
|
|
|
static void fwd_log(Plug *plug, Socket *s, PlugLogType type, SockAddr *addr,
|
|
|
|
int port, const char *error_msg, int error_code)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{ /* don't expect any weirdnesses from a listening socket */ }
|
New API for plug_closing() with a custom type enum.
Passing an operating-system-specific error code to plug_closing(),
such as errno or GetLastError(), was always a bit weird, given that it
generally had to be handled by cross-platform receiving code in
backends. I had the platform.h implementations #define any error
values that the cross-platform code would have to handle specially,
but that's still not a great system, because it also doesn't leave
freedom to invent error representations of my own that don't
correspond to any OS code. (For example, the ones I just removed from
proxy.h.)
So now, the OS error code is gone from the plug_closing API, and in
its place is a custom enumeration of closure types: normal, error, and
the special case BROKEN_PIPE which is the only OS error code we have
so far needed to handle specially. (All others just mean 'abandon the
connection and print the textual message'.)
Having already centralised the handling of OS error codes in the
previous commit, we've now got a convenient place to add any further
type codes for errors needing special handling: each of Unix
plug_closing_errno(), Windows plug_closing_system_error(), and Windows
plug_closing_winsock_error() can easily grow extra special cases if
need be, and each one will only have to live in one place.
2021-11-06 13:28:32 +00:00
|
|
|
static void fwd_closing(Plug *plug, PlugCloseType type, const char *error_msg)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{ /* not here, either */ }
|
|
|
|
|
|
|
|
static int xfwd_accepting(Plug *p, accept_fn_t constructor, accept_ctx_t ctx)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(p, sesschan, xfwd_plug);
|
|
|
|
Plug *plug;
|
|
|
|
Channel *chan;
|
|
|
|
Socket *s;
|
2024-06-26 05:35:40 +00:00
|
|
|
SocketEndpointInfo *pi;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
const char *err;
|
|
|
|
|
Merge the two low-level portfwd setup systems.
In commit 09954a87c I introduced the portfwdmgr_connect_socket()
system, which opened a port forwarding given a callback to create the
Socket itself, with the aim of using it to make forwardings to Unix-
domain sockets and Windows named pipes (both initially for agent
forwarding).
But I forgot that a year and a bit ago, in commit 834396170, I already
introduced a similar low-level system for creating a PortForwarding
around an unusual kind of socket: the portfwd_raw_new() system, which
in place of a callback uses a two-phase setup protocol (you create the
socket in between the two setup calls, and can roll it back if the
socket can't be created).
There's really no need to have _both_ these systems! So now I'm
merging them, which is to say, I'm enhancing portfwd_raw_new to have
the one new feature it needs, and throwing away the newer system
completely. The new feature is to be able to control the initial state
of the 'ready' flag: portfwd_raw_new was always used for initiating
port forwardings in response to an incoming local connection, which
means you need to start off with ready=false and set it true when the
other end of the SSH connection sends back OPEN_CONFIRMATION. Now it's
being used for initiating port forwardings in response to a
CHANNEL_OPEN, we need to be able to start with ready=true.
This commit reverts 09954a87c24e84dac133a9c29ffaef45f145eeca and its
followup fix 12aa06ccc98cf8a912eb2ea54f02d234f2f8c173, and simplifies
the agent_connect system down to a single trivial function that makes
a Socket given a Plug.
2020-01-27 19:34:15 +00:00
|
|
|
chan = portfwd_raw_new(sess->c->cl, &plug, false);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s = constructor(ctx, plug);
|
|
|
|
if ((err = sk_socket_error(s)) != NULL) {
|
2019-09-08 19:29:00 +00:00
|
|
|
portfwd_raw_free(chan);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
return 1;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
pi = sk_peer_info(s);
|
|
|
|
portfwd_raw_setup(chan, s, ssh_serverside_x11_open(sess->c->cl, chan, pi));
|
2024-06-26 05:35:40 +00:00
|
|
|
sk_free_endpoint_info(pi);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
return 0;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static const PlugVtable xfwd_plugvt = {
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.log = fwd_log,
|
|
|
|
.closing = fwd_closing,
|
|
|
|
.accepting = xfwd_accepting,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
};
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_enable_x11_forwarding(
|
|
|
|
Channel *chan, bool oneshot, ptrlen authproto, ptrlen authdata_hex,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
unsigned screen_number)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
strbuf *authdata_bin;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
if (oneshot)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false; /* not supported */
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Decode the authorisation data from ASCII hex into binary.
|
|
|
|
*/
|
|
|
|
if (authdata_hex.len % 2)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false; /* expected an even number of digits */
|
2019-03-01 19:28:00 +00:00
|
|
|
authdata_bin = strbuf_new_nm();
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
for (i = 0; i < authdata_hex.len; i += 2) {
|
|
|
|
const unsigned char *hex = authdata_hex.ptr;
|
|
|
|
char hexbuf[3];
|
|
|
|
|
2023-03-05 13:15:57 +00:00
|
|
|
if (!isxdigit((unsigned char)hex[i]) ||
|
|
|
|
!isxdigit((unsigned char)hex[i+1])) {
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
strbuf_free(authdata_bin);
|
2018-10-29 19:50:29 +00:00
|
|
|
return false; /* not hex */
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
hexbuf[0] = hex[i];
|
|
|
|
hexbuf[1] = hex[i+1];
|
|
|
|
hexbuf[2] = '\0';
|
|
|
|
put_byte(authdata_bin, strtoul(hexbuf, NULL, 16));
|
|
|
|
}
|
|
|
|
|
|
|
|
sess->xfwd_plug.vt = &xfwd_plugvt;
|
|
|
|
|
sesschan.c: use dupprintf in place of snprintf.
I hadn't actually realised until now that the SSH server code is now
being compiled on Windows! It happened because I've been using static
libraries internally to the build organisation: of course, CMake has
no way of knowing that those libraries are only needed _within_ the
build, and for all it knows they might be end products shipped to
users to link their own applications with. So all the objects in the
'sshserver' library will now be compiled, even on Windows, where no
applications actually link with it.
And in that context, the use of snprintf caused a compiler warning
from the w32old build, because there, snprintf doesn't exist in the
older version of the C library.
Of course, it's currently benign, because no application in the w32old
build (or any other Windows build) is actually linking again the
sshserver library. But I don't want to rule it out in future, or at
least not for a trivial reason like this. So I've fixed the warning in
the simplest way, by switching to our own dupprintf, which is
available everywhere.
2021-04-22 16:43:38 +00:00
|
|
|
char *screensuffix = dupprintf(".%u", screen_number);
|
|
|
|
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
sess->n_x11_sockets = platform_make_x11_server(
|
|
|
|
&sess->xfwd_plug, appname, 10, screensuffix,
|
|
|
|
authproto, ptrlen_from_strbuf(authdata_bin),
|
|
|
|
sess->x11_sockets, sess->conf);
|
|
|
|
|
sesschan.c: use dupprintf in place of snprintf.
I hadn't actually realised until now that the SSH server code is now
being compiled on Windows! It happened because I've been using static
libraries internally to the build organisation: of course, CMake has
no way of knowing that those libraries are only needed _within_ the
build, and for all it knows they might be end products shipped to
users to link their own applications with. So all the objects in the
'sshserver' library will now be compiled, even on Windows, where no
applications actually link with it.
And in that context, the use of snprintf caused a compiler warning
from the w32old build, because there, snprintf doesn't exist in the
older version of the C library.
Of course, it's currently benign, because no application in the w32old
build (or any other Windows build) is actually linking again the
sshserver library. But I don't want to rule it out in future, or at
least not for a trivial reason like this. So I've fixed the warning in
the simplest way, by switching to our own dupprintf, which is
available everywhere.
2021-04-22 16:43:38 +00:00
|
|
|
sfree(screensuffix);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
strbuf_free(authdata_bin);
|
|
|
|
return sess->n_x11_sockets != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int agentfwd_accepting(
|
|
|
|
Plug *p, accept_fn_t constructor, accept_ctx_t ctx)
|
|
|
|
{
|
2020-12-23 22:26:44 +00:00
|
|
|
agentfwd *agent = container_of(p, agentfwd, plug);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
Plug *plug;
|
|
|
|
Channel *chan;
|
|
|
|
Socket *s;
|
|
|
|
const char *err;
|
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
chan = portfwd_raw_new(agent->cl, &plug, false);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s = constructor(ctx, plug);
|
|
|
|
if ((err = sk_socket_error(s)) != NULL) {
|
2019-09-08 19:29:00 +00:00
|
|
|
portfwd_raw_free(chan);
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
return 1;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
2020-12-23 22:26:44 +00:00
|
|
|
portfwd_raw_setup(chan, s, ssh_serverside_agent_open(agent->cl, chan));
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
return 0;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static const PlugVtable agentfwd_plugvt = {
|
Change vtable defs to use C99 designated initialisers.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
2020-03-10 21:06:29 +00:00
|
|
|
.log = fwd_log,
|
|
|
|
.closing = fwd_closing,
|
|
|
|
.accepting = agentfwd_accepting,
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
};
|
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
agentfwd *agentfwd_new(ConnectionLayer *cl, char **socketname_out)
|
|
|
|
{
|
|
|
|
agentfwd *agent = snew(agentfwd);
|
|
|
|
agent->cl = cl;
|
|
|
|
agent->plug.vt = &agentfwd_plugvt;
|
|
|
|
|
|
|
|
char *dir_prefix = dupprintf("/tmp/%s-agentfwd", appname);
|
|
|
|
char *error = NULL, *socketname = NULL;
|
|
|
|
agent->socket = platform_make_agent_socket(
|
|
|
|
&agent->plug, dir_prefix, &error, &socketname);
|
|
|
|
sfree(dir_prefix);
|
|
|
|
sfree(error);
|
|
|
|
|
|
|
|
if (!agent->socket) {
|
|
|
|
sfree(agent);
|
|
|
|
sfree(socketname);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
*socketname_out = socketname;
|
|
|
|
return agent;
|
|
|
|
}
|
|
|
|
|
|
|
|
void agentfwd_free(agentfwd *agent)
|
|
|
|
{
|
|
|
|
if (agent->socket)
|
|
|
|
sk_close(agent->socket);
|
|
|
|
sfree(agent);
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_enable_agent_forwarding(Channel *chan)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
2020-12-23 22:26:44 +00:00
|
|
|
char *socketname;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
assert(!sess->agent);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
sess->agent = agentfwd_new(sess->c->cl, &socketname);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
if (!sess->agent)
|
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2020-12-23 22:26:44 +00:00
|
|
|
conf_set_str_str(sess->conf, CONF_environmt, "SSH_AUTH_SOCK", socketname);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
sfree(socketname);
|
2020-12-23 22:26:44 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_allocate_pty(
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
Channel *chan, ptrlen termtype, unsigned width, unsigned height,
|
|
|
|
unsigned pixwidth, unsigned pixheight, struct ssh_ttymodes modes)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
char *s;
|
|
|
|
|
|
|
|
if (sess->want_pty)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
s = mkstr(termtype);
|
|
|
|
conf_set_str(sess->conf, CONF_termtype, s);
|
|
|
|
sfree(s);
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
sess->want_pty = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
sess->ttymodes = modes;
|
|
|
|
sess->wc = width;
|
|
|
|
sess->hc = height;
|
|
|
|
sess->wp = pixwidth;
|
|
|
|
sess->hp = pixheight;
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_set_env(Channel *chan, ptrlen var, ptrlen value)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
char *svar = mkstr(var), *svalue = mkstr(value);
|
|
|
|
conf_set_str_str(sess->conf, CONF_environmt, svar, svalue);
|
|
|
|
sfree(svar);
|
|
|
|
sfree(svalue);
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_send_break(Channel *chan, unsigned length)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (sess->backend) {
|
|
|
|
/* We ignore the break length. We could pass it through as the
|
2022-01-22 15:38:53 +00:00
|
|
|
* 'arg' parameter, and have pty.c collect it and pass it on
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
* to tcsendbreak, but since tcsendbreak in turn assigns
|
|
|
|
* implementation-defined semantics to _its_ duration
|
|
|
|
* parameter, this all just sounds too difficult. */
|
|
|
|
backend_special(sess->backend, SS_BRK, 0);
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_send_signal(Channel *chan, ptrlen signame)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
/* Start with a code that definitely isn't a signal (or indeed a
|
|
|
|
* special command at all), to indicate 'nothing matched'. */
|
|
|
|
SessionSpecialCode code = SS_EXITMENU;
|
|
|
|
|
|
|
|
#define SIGNAL_SUB(name) \
|
|
|
|
if (ptrlen_eq_string(signame, #name)) code = SS_SIG ## name;
|
|
|
|
#define SIGNAL_MAIN(name, text) SIGNAL_SUB(name)
|
2021-04-22 16:58:40 +00:00
|
|
|
#include "signal-list.h"
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
#undef SIGNAL_MAIN
|
|
|
|
#undef SIGNAL_SUB
|
|
|
|
|
|
|
|
if (code == SS_EXITMENU)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
backend_special(sess->backend, code, 0);
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool sesschan_change_window_size(
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
Channel *chan, unsigned width, unsigned height,
|
|
|
|
unsigned pixwidth, unsigned pixheight)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
if (!sess->want_pty)
|
2018-10-29 19:50:29 +00:00
|
|
|
return false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
sess->wc = width;
|
|
|
|
sess->hc = height;
|
|
|
|
sess->wp = pixwidth;
|
|
|
|
sess->hp = pixheight;
|
|
|
|
|
|
|
|
if (sess->backend)
|
|
|
|
backend_size(sess->backend, sess->wc, sess->hc);
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sesschan_seat_output(
|
2021-09-16 13:46:49 +00:00
|
|
|
Seat *seat, SeatOutputType type, const void *data, size_t len)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(seat, sesschan, seat);
|
2021-09-16 13:46:49 +00:00
|
|
|
return sshfwd_write_ext(sess->c, type == SEAT_OUTPUT_STDERR, data, len);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_check_close_callback(void *vctx)
|
|
|
|
{
|
|
|
|
sesschan *sess = (sesschan *)vctx;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Once we've seen incoming EOF from the backend (aka EIO from the
|
|
|
|
* pty master) and also passed on the process's exit status, we
|
|
|
|
* should proactively initiate closure of the session channel.
|
|
|
|
*/
|
|
|
|
if (sess->seen_eof && sess->seen_exit)
|
|
|
|
sshfwd_initiate_close(sess->c, NULL);
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_want_close(Channel *chan, bool seen_eof, bool rcvd_eof)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Similarly to above, we don't want to initiate channel closure
|
|
|
|
* until we've sent the process's exit status, _even_ if EOF of
|
|
|
|
* the actual data stream has happened in both directions.
|
|
|
|
*/
|
|
|
|
return (sess->seen_eof && sess->seen_exit);
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_seat_eof(Seat *seat)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(seat, sesschan, seat);
|
|
|
|
|
|
|
|
sshfwd_write_eof(sess->c);
|
2018-10-29 19:50:29 +00:00
|
|
|
sess->seen_eof = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
queue_toplevel_callback(sesschan_check_close_callback, sess);
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_notify_remote_exit(Seat *seat)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(seat, sesschan, seat);
|
|
|
|
|
|
|
|
if (!sess->backend)
|
|
|
|
return;
|
|
|
|
|
2019-03-30 07:28:38 +00:00
|
|
|
bool got_signal = false;
|
|
|
|
if (!sess->ssc->exit_signal_numeric) {
|
|
|
|
char *sigmsg;
|
|
|
|
ptrlen signame = pty_backend_exit_signame(sess->backend, &sigmsg);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2019-03-30 07:28:38 +00:00
|
|
|
if (signame.len) {
|
|
|
|
if (!sigmsg)
|
|
|
|
sigmsg = dupstr("");
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2019-03-30 07:28:38 +00:00
|
|
|
sshfwd_send_exit_signal(
|
|
|
|
sess->c, signame, false, ptrlen_from_asciz(sigmsg));
|
|
|
|
|
|
|
|
got_signal = true;
|
|
|
|
}
|
2020-06-16 16:43:36 +00:00
|
|
|
|
|
|
|
sfree(sigmsg);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
} else {
|
2019-03-30 07:28:38 +00:00
|
|
|
int signum = pty_backend_exit_signum(sess->backend);
|
|
|
|
|
|
|
|
if (signum >= 0) {
|
|
|
|
sshfwd_send_exit_signal_numeric(sess->c, signum, false,
|
|
|
|
PTRLEN_LITERAL(""));
|
|
|
|
got_signal = true;
|
|
|
|
}
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
2019-03-30 07:28:38 +00:00
|
|
|
if (!got_signal)
|
|
|
|
sshfwd_send_exit_status(sess->c, backend_exitcode(sess->backend));
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
sess->seen_exit = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
queue_toplevel_callback(sesschan_check_close_callback, sess);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sesschan_connection_fatal(Seat *seat, const char *message)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(seat, sesschan, seat);
|
|
|
|
|
|
|
|
/* Closest translation I can think of */
|
|
|
|
sshfwd_send_exit_signal(
|
2018-10-29 19:50:29 +00:00
|
|
|
sess->c, PTRLEN_LITERAL("HUP"), false, ptrlen_from_asciz(message));
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
sess->ignoring_input = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static bool sesschan_get_window_pixel_size(Seat *seat, int *width, int *height)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(seat, sesschan, seat);
|
|
|
|
|
|
|
|
*width = sess->wp;
|
|
|
|
*height = sess->hp;
|
|
|
|
|
2018-10-29 19:50:29 +00:00
|
|
|
return true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Built-in SFTP subsystem.
|
|
|
|
*/
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t sftp_chan_send(Channel *chan, bool is_stderr,
|
|
|
|
const void *data, size_t length)
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
|
|
|
|
bufchain_add(&sess->subsys_input, data, length);
|
|
|
|
|
|
|
|
while (bufchain_size(&sess->subsys_input) >= 4) {
|
|
|
|
char lenbuf[4];
|
|
|
|
unsigned pktlen;
|
|
|
|
struct sftp_packet *pkt, *reply;
|
|
|
|
|
|
|
|
bufchain_fetch(&sess->subsys_input, lenbuf, 4);
|
2019-02-04 07:39:03 +00:00
|
|
|
pktlen = GET_32BIT_MSB_FIRST(lenbuf);
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
|
|
|
|
if (bufchain_size(&sess->subsys_input) - 4 < pktlen)
|
|
|
|
break; /* wait for more data */
|
|
|
|
|
|
|
|
bufchain_consume(&sess->subsys_input, 4);
|
|
|
|
pkt = sftp_recv_prepare(pktlen);
|
|
|
|
bufchain_fetch_consume(&sess->subsys_input, pkt->data, pktlen);
|
|
|
|
sftp_recv_finish(pkt);
|
|
|
|
reply = sftp_handle_request(sess->sftpsrv, pkt);
|
|
|
|
sftp_pkt_free(pkt);
|
|
|
|
|
|
|
|
sftp_send_prepare(reply);
|
|
|
|
sshfwd_write(sess->c, reply->data, reply->length);
|
|
|
|
sftp_pkt_free(reply);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sftp_chan_send_eof(Channel *chan)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
sshfwd_write_eof(sess->c);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *sftp_log_close_msg(Channel *chan)
|
|
|
|
{
|
|
|
|
return dupstr("Session channel (SFTP) closed");
|
|
|
|
}
|
2018-10-20 10:19:17 +00:00
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
|
|
* Built-in SCP subsystem.
|
|
|
|
*/
|
|
|
|
|
2019-02-06 20:42:44 +00:00
|
|
|
static size_t scp_chan_send(Channel *chan, bool is_stderr,
|
|
|
|
const void *data, size_t length)
|
2018-10-20 10:19:17 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
return scp_send(sess->scpsrv, data, length);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void scp_chan_send_eof(Channel *chan)
|
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
scp_eof(sess->scpsrv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *scp_log_close_msg(Channel *chan)
|
|
|
|
{
|
|
|
|
return dupstr("Session channel (SCP) closed");
|
|
|
|
}
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
static void scp_set_input_wanted(Channel *chan, bool wanted)
|
2018-10-20 10:19:17 +00:00
|
|
|
{
|
|
|
|
sesschan *sess = container_of(chan, sesschan, chan);
|
|
|
|
scp_throttle(sess->scpsrv, !wanted);
|
|
|
|
}
|