1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/windows/console.c

622 lines
18 KiB
C
Raw Normal View History

/*
* console.c - various interactive-prompt routines shared between
* the Windows console PuTTY tools
*/
#include <stdio.h>
#include <stdlib.h>
#include "putty.h"
#include "storage.h"
#include "ssh.h"
#include "console.h"
void cleanup_exit(int code)
{
/*
* Clean up.
*/
sk_cleanup();
random_save_seed();
exit(code);
}
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
void console_print_error_msg(const char *prefix, const char *msg)
{
fputs(prefix, stderr);
fputs(": ", stderr);
fputs(msg, stderr);
fputc('\n', stderr);
fflush(stderr);
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
/*
* System for getting I/O handles to talk to the console for
* interactive prompts.
*
* In PuTTY 0.78 and before, these prompts used the standard I/O
* handles. But this means you can't redirect Plink's actual stdin
* from a sensible data channel without the responses to login prompts
* unwantedly being read from it too.
*
* However, many versions of PuTTY have worked the old way, so we need
* a method of falling back to it for the sake of whoever's workflow
* it turns out to break. So this structure equivocates between the
* two systems.
*/
static bool conio_use_standard_handles = false;
bool console_set_stdio_prompts(bool newvalue)
{
conio_use_standard_handles = newvalue;
return true;
}
typedef struct ConsoleIO {
HANDLE hin, hout;
bool need_close_hin, need_close_hout;
bool hin_is_console, hout_is_console;
BinarySink_IMPLEMENTATION;
} ConsoleIO;
static void console_write(BinarySink *bs, const void *data, size_t len);
static ConsoleIO *conio_setup(void)
{
ConsoleIO *conio = snew(ConsoleIO);
conio->hin = conio->hout = INVALID_HANDLE_VALUE;
conio->need_close_hin = conio->need_close_hout = false;
/*
* First try opening the console itself, so that prompts will go
* there regardless of I/O redirection. We don't do this if the
* user has deliberately requested a fallback to the old
* behaviour. We also don't do it in batch mode, because in that
* situation, any need for an interactive prompt will instead
* noninteractively abort the connection, and in that situation,
* the 'prompt' becomes more in the nature of an error message, so
* it should go to standard error like everything else.
*/
if (!conio_use_standard_handles && !console_batch_mode) {
/*
* If we do open the console, it has to be done separately for
* input and output, with different magic file names.
*
* We need both read and write permission for both handles,
* because read permission is needed to read the console mode
* (in particular, to test if a file handle _is_ a console),
* and write permission to change it.
*/
conio->hin = CreateFile("CONIN$", GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING, 0, NULL);
if (conio->hin != INVALID_HANDLE_VALUE)
conio->need_close_hin = true;
conio->hout = CreateFile("CONOUT$", GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING, 0, NULL);
if (conio->hout != INVALID_HANDLE_VALUE)
conio->need_close_hout = true;
}
/*
* Fall back from that to using the standard handles. We use
* standard error rather than standard output for our prompts,
* because that has a better chance of separating them from
*/
if (conio->hin == INVALID_HANDLE_VALUE)
conio->hin = GetStdHandle(STD_INPUT_HANDLE);
if (conio->hout == INVALID_HANDLE_VALUE)
conio->hout = GetStdHandle(STD_INPUT_HANDLE);
DWORD dummy;
conio->hin_is_console = GetConsoleMode(conio->hin, &dummy);
conio->hout_is_console = GetConsoleMode(conio->hout, &dummy);
BinarySink_INIT(conio, console_write);
return conio;
}
static void conio_free(ConsoleIO *conio)
{
if (conio->need_close_hin)
CloseHandle(conio->hin);
if (conio->need_close_hout)
CloseHandle(conio->hout);
sfree(conio);
}
static void console_write(BinarySink *bs, const void *data, size_t len)
{
ConsoleIO *conio = BinarySink_DOWNCAST(bs, ConsoleIO);
const char *cdata = (const char *)data;
size_t pos = 0;
DWORD nwritten;
while (pos < len && WriteFile(conio->hout, cdata+pos, len-pos,
&nwritten, NULL))
pos += nwritten;
}
static bool console_read_line_to_strbuf(ConsoleIO *conio, bool echo,
strbuf *sb)
{
DWORD savemode;
if (conio->hin_is_console) {
GetConsoleMode(conio->hin, &savemode);
DWORD newmode = savemode | ENABLE_PROCESSED_INPUT | ENABLE_LINE_INPUT;
if (!echo)
newmode &= ~ENABLE_ECHO_INPUT;
else
newmode |= ENABLE_ECHO_INPUT;
SetConsoleMode(conio->hin, newmode);
}
bool toret = false;
while (true) {
if (ptrlen_endswith(ptrlen_from_strbuf(sb),
PTRLEN_LITERAL("\n"), NULL)) {
toret = true;
goto out;
}
char buf[4096];
DWORD nread;
if (!ReadFile(conio->hin, buf, lenof(buf), &nread, NULL))
goto out;
put_data(sb, buf, nread);
smemclr(buf, sizeof(buf));
}
out:
if (!echo)
put_datalit(conio, "\r\n");
if (conio->hin_is_console)
SetConsoleMode(conio->hin, savemode);
return toret;
}
static char *console_read_line(ConsoleIO *conio, bool echo)
{
strbuf *sb = strbuf_new_nm();
if (!console_read_line_to_strbuf(conio, echo, sb)) {
strbuf_free(sb);
return NULL;
} else {
return strbuf_to_str(sb);
}
}
typedef enum {
RESPONSE_ABANDON,
RESPONSE_YES,
RESPONSE_NO,
RESPONSE_INFO,
RESPONSE_UNRECOGNISED
} ResponseType;
static ResponseType parse_and_free_response(char *line)
{
if (!line)
return RESPONSE_ABANDON;
ResponseType toret;
switch (line[0]) {
/* In case of misplaced reflexes from another program,
* recognise 'q' as 'abandon connection' as well as the
* advertised 'just press Return' */
case 'q':
case 'Q':
case '\n':
case '\r':
case '\0':
toret = RESPONSE_ABANDON;
break;
case 'y':
case 'Y':
toret = RESPONSE_YES;
break;
case 'n':
case 'N':
toret = RESPONSE_NO;
break;
case 'i':
case 'I':
toret = RESPONSE_INFO;
break;
default:
toret = RESPONSE_UNRECOGNISED;
break;
}
burnstr(line);
return toret;
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult console_confirm_ssh_host_key(
Seat *seat, const char *host, int port, const char *keytype,
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
char *keystr, SeatDialogText *text, HelpCtx helpctx,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
{
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
const char *prompt = NULL;
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
SeatPromptResult result;
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
for (SeatDialogTextItem *item = text->items,
*end = item+text->nitems; item < end; item++) {
switch (item->type) {
case SDT_PARA:
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
wordwrap(BinarySink_UPCAST(conio),
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
ptrlen_from_asciz(item->text), 60);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_byte(conio, '\n');
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
case SDT_DISPLAY:
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, " %s\n", item->text);
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
case SDT_SCARY_HEADING:
/* Can't change font size or weight in this context */
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, "%s\n", item->text);
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
case SDT_BATCH_ABORT:
if (console_batch_mode) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, "%s\n", item->text);
result = SPR_SW_ABORT(
"Cannot confirm a host key in batch mode");
goto out;
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
}
break;
case SDT_PROMPT:
prompt = item->text;
break;
default:
break;
}
}
assert(prompt); /* something in the SeatDialogText should have set this */
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ResponseType response;
while (true) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, "%s (y/n, Return cancels connection, i for more info) ",
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
prompt);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
response = parse_and_free_response(console_read_line(conio, true));
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (response == RESPONSE_INFO) {
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
for (SeatDialogTextItem *item = text->items,
*end = item+text->nitems; item < end; item++) {
switch (item->type) {
case SDT_MORE_INFO_KEY:
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, item->text);
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
case SDT_MORE_INFO_VALUE_SHORT:
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, ": %s\n", item->text);
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
case SDT_MORE_INFO_VALUE_BLOB:
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, ":\n%s\n", item->text);
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
break;
default:
break;
}
}
} else {
break;
}
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (response == RESPONSE_YES || response == RESPONSE_NO) {
if (response == RESPONSE_YES)
store_host_key(seat, host, port, keytype, keystr);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
result = SPR_OK;
} else {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_abandoned_msg);
result = SPR_USER_ABORT;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
out:
conio_free(conio);
return result;
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult console_confirm_weak_crypto_primitive(
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
Seat *seat, const char *algtype, const char *algname,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
{
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
SeatPromptResult result;
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, weakcrypto_msg_common_fmt, algtype, algname);
if (console_batch_mode) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_abandoned_msg);
result = SPR_SW_ABORT("Cannot confirm a weak crypto primitive "
"in batch mode");
goto out;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_continue_prompt);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ResponseType response = parse_and_free_response(
console_read_line(conio, true));
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (response == RESPONSE_YES) {
result = SPR_OK;
} else {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_abandoned_msg);
result = SPR_USER_ABORT;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
out:
conio_free(conio);
return result;
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult console_confirm_weak_cached_hostkey(
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
Seat *seat, const char *algname, const char *betteralgs,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
{
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
SeatPromptResult result;
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, weakhk_msg_common_fmt, algname, betteralgs);
if (console_batch_mode) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_abandoned_msg);
result = SPR_SW_ABORT("Cannot confirm a weak cached host key "
"in batch mode");
goto out;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_continue_prompt);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ResponseType response = parse_and_free_response(
console_read_line(conio, true));
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (response == RESPONSE_YES) {
result = SPR_OK;
} else {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, console_abandoned_msg);
result = SPR_USER_ABORT;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
out:
conio_free(conio);
return result;
}
bool is_interactive(void)
{
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
bool toret = conio->hin_is_console;
conio_free(conio);
return toret;
}
bool console_antispoof_prompt = true;
void console_set_trust_status(Seat *seat, bool trusted)
{
/* Do nothing in response to a change of trust status, because
* there's nothing we can do in a console environment. However,
* the query function below will make a fiddly decision about
* whether to tell the backend to enable fallback handling. */
}
bool console_can_set_trust_status(Seat *seat)
{
New Seat query, has_mixed_input_stream(). (TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
if (console_batch_mode) {
/*
* In batch mode, we don't need to worry about the server
* mimicking our interactive authentication, because the user
* already knows not to expect any.
*/
return true;
}
return false;
}
New Seat query, has_mixed_input_stream(). (TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
bool console_has_mixed_input_stream(Seat *seat)
{
if (!is_interactive() || !console_antispoof_prompt) {
/*
* If standard input isn't connected to a terminal, then even
* if the server did send a spoof authentication prompt, the
* user couldn't respond to it via the terminal anyway.
*
* We also pretend this is true if the user has purposely
* disabled the antispoof prompt.
*/
return false;
}
return true;
}
/*
* Ask whether to wipe a session log file before writing to it.
* Returns 2 for wipe, 1 for append, 0 for cancel (don't log).
*/
int console_askappend(LogPolicy *lp, Filename *filename,
void (*callback)(void *ctx, int result), void *ctx)
{
static const char msgtemplate[] =
"The session log file \"%.*s\" already exists.\n"
"You can overwrite it with a new session log,\n"
"append your session log to the end of it,\n"
"or disable session logging for this session.\n"
"Enter \"y\" to wipe the file, \"n\" to append to it,\n"
"or just press Return to disable logging.\n"
"Wipe the log file? (y/n, Return cancels logging) ";
static const char msgtemplate_batch[] =
"The session log file \"%.*s\" already exists.\n"
"Logging will not be enabled.\n";
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
int result;
if (console_batch_mode) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, msgtemplate_batch, FILENAME_MAX, filename->path);
result = 0;
goto out;
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_fmt(conio, msgtemplate, FILENAME_MAX, filename->path);
ResponseType response = parse_and_free_response(
console_read_line(conio, true));
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (response == RESPONSE_YES)
result = 2;
else if (response == RESPONSE_NO)
result = 1;
else
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
result = 0;
out:
conio_free(conio);
return result;
}
/*
* Warn about the obsolescent key file format.
*
* Uniquely among these functions, this one does _not_ expect a
* frontend handle. This means that if PuTTY is ported to a
* platform which requires frontend handles, this function will be
* an anomaly. Fortunately, the problem it addresses will not have
* been present on that platform, so it can plausibly be
* implemented as an empty function.
*/
void old_keyfile_warning(void)
{
static const char message[] =
"You are loading an SSH-2 private key which has an\n"
"old version of the file format. This means your key\n"
"file is not fully tamperproof. Future versions of\n"
"PuTTY may stop supporting this private key format,\n"
"so we recommend you convert your key to the new\n"
"format.\n"
"\n"
"Once the key is loaded into PuTTYgen, you can perform\n"
"this conversion simply by saving it again.\n";
fputs(message, stderr);
}
/*
* Display the fingerprints of the PGP Master Keys to the user.
*/
void pgp_fingerprints(void)
{
fputs("These are the fingerprints of the PuTTY PGP Master Keys. They can\n"
"be used to establish a trust path from this executable to another\n"
"one. See the manual for more information.\n"
"(Note: these fingerprints have nothing to do with SSH!)\n"
"\n"
"PuTTY Master Key as of " PGP_MASTER_KEY_YEAR
" (" PGP_MASTER_KEY_DETAILS "):\n"
" " PGP_MASTER_KEY_FP "\n\n"
"Previous Master Key (" PGP_PREV_MASTER_KEY_YEAR
", " PGP_PREV_MASTER_KEY_DETAILS "):\n"
" " PGP_PREV_MASTER_KEY_FP "\n", stdout);
}
void console_logging_error(LogPolicy *lp, const char *string)
{
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
/* Ordinary Event Log entries are displayed in the same way as
* logging errors, but only in verbose mode */
fprintf(stderr, "%s\n", string);
fflush(stderr);
}
void console_eventlog(LogPolicy *lp, const char *string)
{
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
/* Ordinary Event Log entries are displayed in the same way as
* logging errors, but only in verbose mode */
Remove FLAG_VERBOSE. The global 'int flags' has always been an ugly feature of this code base, and I suddenly thought that perhaps it's time to start throwing it out, one flag at a time, until it's totally unused. My first target is FLAG_VERBOSE. This was usually set by cmdline.c when it saw a -v option on the program's command line, except that GUI PuTTY itself sets it unconditionally on startup. And then various bits of the code would check it in order to decide whether to print a given message. In the current system of front-end abstraction traits, there's no _one_ place that I can move it to. But there are two: every place that checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So now each of those traits has a query method for 'do I want verbose messages?'. A good effect of this is that subsidiary Seats, like the ones used in Uppity for the main SSH server module itself and the server end of shell channels, now get to have their own verbosity setting instead of inheriting the one global one. In fact I don't expect any code using those Seats to be generating any messages at all, but if that changes later, we'll have a way to control it. (Who knows, perhaps logging in Uppity might become a thing.) As part of this cleanup, I've added a new flag to cmdline_tooltype, called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools now set that, and it has the effect of making cmdline.c disallow -v completely. So where 'putty -v' would previously have been silently ignored ("I was already verbose"), it's now an error, reminding you that that option doesn't actually do anything. Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c (with identical definitions) has had to move into a new file of its own, because now it has to ask cmdline.c for the verbosity setting as well as asking console.c for the rest of its methods. So there's a new file clicons.c which can only be included by programs that link against both cmdline.c _and_ one of the *cons.c, and I've renamed the logpolicy to reflect that.
2020-01-30 06:40:21 +00:00
if (lp_verbose(lp))
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
console_logging_error(lp, string);
}
StripCtrlChars *console_stripctrl_new(
Seat *seat, BinarySink *bs_out, SeatInteractionContext sic)
{
return stripctrl_new(bs_out, false, 0);
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult console_get_userpass_input(prompts_t *p)
{
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
ConsoleIO *conio = conio_setup();
SeatPromptResult result;
size_t curr_prompt;
/*
* Zero all the results, in case we abort half-way through.
*/
{
int i;
for (i = 0; i < (int)p->n_prompts; i++)
prompt_set_result(p->prompts[i], "");
}
/*
* The prompts_t might contain a message to be displayed but no
* actual prompt. More usually, though, it will contain
* questions that the user needs to answer, in which case we
* need to ensure that we're able to get the answers.
*/
if (p->n_prompts) {
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (console_batch_mode) {
result = SPR_SW_ABORT("Cannot answer interactive prompts "
"in batch mode");
goto out;
}
}
/*
* Preamble.
*/
/* We only print the `name' caption if we have to... */
if (p->name_reqd && p->name) {
ptrlen plname = ptrlen_from_asciz(p->name);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_datapl(conio, plname);
if (!ptrlen_endswith(plname, PTRLEN_LITERAL("\n"), NULL))
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_datalit(conio, "\n");
}
/* ...but we always print any `instruction'. */
if (p->instruction) {
ptrlen plinst = ptrlen_from_asciz(p->instruction);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_datapl(conio, plinst);
if (!ptrlen_endswith(plinst, PTRLEN_LITERAL("\n"), NULL))
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_datalit(conio, "\n");
}
for (curr_prompt = 0; curr_prompt < p->n_prompts; curr_prompt++) {
prompt_t *pr = p->prompts[curr_prompt];
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
put_dataz(conio, pr->prompt);
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
if (!console_read_line_to_strbuf(conio, pr->echo, pr->result)) {
result = make_spr_sw_abort_winerror(
"Error reading from console", GetLastError());
goto out;
} else if (!pr->result->len) {
/* Regard EOF on the terminal as a deliberate user-abort */
result = SPR_USER_ABORT;
goto out;
} else {
if (strbuf_chomp(pr->result, '\n')) {
strbuf_chomp(pr->result, '\r');
}
}
}
New system for reading prompts from the console. Until now, the command-line PuTTY tools (PSCP, PSFTP and Plink) have presented all the kinds of interactive prompt (password/passphrase, host key, the assorted weak-crypto warnings, 'append to log file?') on standard error, and read the responses from standard input. This is unfortunate because if you're redirecting their standard input (especially likely with Plink) then the prompt responses will consume some of the intended session data. It would be better to present the prompts _on the console_, even if that's not where stdin or stderr point. On Unix, we've been doing this for ages, by opening /dev/tty directly. On Windows, we didn't, because I didn't know how. But I've recently found out: you can open the magic file names CONIN$ and CONOUT$, which will point at your actual console, if one is available. So now, if it's possible, the command-line tools will do that. But if the attempt to open CONIN$ and CONOUT$ fails, they'll fall back to the old behaviour (in particular, if no console is available at all). In order to make this happen consistently across all the prompt types, I've introduced a new object called ConsoleIO, which holds whatever file handles are necessary, knows whether to close them afterwards (yes if they were obtained by opening CONFOO$, no if they're the standard I/O handles), and presents a BinarySink API to write to them and a custom API to read a line of text. This seems likely to break _someone's_ workflow. So I've added an option '-legacy-stdio-prompts' to restore the old behaviour.
2022-11-24 12:46:25 +00:00
result = SPR_OK;
out:
conio_free(conio);
return result;
}