1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/sshdh.c

101 lines
2.3 KiB
C
Raw Normal View History

#include "ssh.h"
struct ssh_kex ssh_diffiehellman = {
"diffie-hellman-group1-sha1"
};
/*
* The prime p used in the key exchange.
*/
static unsigned char P[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
/*
* The generator g = 2.
*/
static unsigned char G[] = { 2 };
/*
* Variables.
*/
static Bignum x, e, p, q, qmask, g;
static int need_to_free_pg;
/*
* Common DH initialisation.
*/
static void dh_init(void) {
q = bignum_rshift(p, 1);
qmask = bignum_bitmask(q);
}
/*
* Initialise DH for the standard group1.
*/
void dh_setup_group1(void) {
p = bignum_from_bytes(P, sizeof(P));
g = bignum_from_bytes(G, sizeof(G));
dh_init();
}
/*
* Clean up.
*/
void dh_cleanup(void) {
freebn(p);
freebn(g);
freebn(q);
freebn(qmask);
}
/*
* DH stage 1: invent a number x between 1 and q, and compute e =
* g^x mod p. Return e.
*/
Bignum dh_create_e(void) {
int i;
int nbytes;
unsigned char *buf;
nbytes = ssh1_bignum_length(qmask);
buf = smalloc(nbytes);
do {
/*
* Create a potential x, by ANDing a string of random bytes
* with qmask.
*/
if (x) freebn(x);
ssh1_write_bignum(buf, qmask);
for (i = 2; i < nbytes; i++)
buf[i] &= random_byte();
ssh1_read_bignum(buf, &x);
} while (bignum_cmp(x, One) <= 0 || bignum_cmp(x, q) >= 0);
/*
* Done. Now compute e = g^x mod p.
*/
e = modpow(g, x, p);
return e;
}
/*
* DH stage 2: given a number f, compute K = f^x mod p.
*/
Bignum dh_find_K(Bignum f) {
return modpow(f, x, p);
}