1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 09:27:59 +00:00
putty-source/misc.h

212 lines
6.9 KiB
C
Raw Normal View History

/*
* Header for misc.c.
*/
#ifndef PUTTY_MISC_H
#define PUTTY_MISC_H
#include "defs.h"
#include "puttymem.h"
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
#include "marshal.h"
#include <stdio.h> /* for FILE * */
#include <stdarg.h> /* for va_list */
#include <time.h> /* for struct tm */
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
unsigned long parse_blocksize(const char *bs);
char ctrlparse(char *s, char **next);
size_t host_strcspn(const char *s, const char *set);
char *host_strchr(const char *s, int c);
char *host_strrchr(const char *s, int c);
char *host_strduptrim(const char *s);
char *dupstr(const char *s);
char *dupcat(const char *s1, ...);
char *dupprintf(const char *fmt, ...)
#ifdef __GNUC__
__attribute__ ((format (printf, 1, 2)))
#endif
;
char *dupvprintf(const char *fmt, va_list ap);
void burnstr(char *string);
struct strbuf {
char *s;
unsigned char *u;
int len;
New centralised binary-data marshalling system. I've finally got tired of all the code throughout PuTTY that repeats the same logic about how to format the SSH binary primitives like uint32, string, mpint. We've got reasonably organised code in ssh.c that appends things like that to 'struct Packet'; something similar in sftp.c which repeats a lot of the work; utility functions in various places to format an mpint to feed to one or another hash function; and no end of totally ad-hoc stuff in functions like public key blob formatters which actually have to _count up_ the size of data painstakingly, then malloc exactly that much and mess about with PUT_32BIT. It's time to bring all of that into one place, and stop repeating myself in error-prone ways everywhere. The new marshal.h defines a system in which I centralise all the actual marshalling functions, and then layer a touch of C macro trickery on top to allow me to (look as if I) pass a wide range of different types to those functions, as long as the target type has been set up in the right way to have a write() function. This commit adds the new header and source file, and sets up some general centralised types (strbuf and the various hash-function contexts like SHA_State), but doesn't use the new calls for anything yet. (I've also renamed some internal functions in import.c which were using the same names that I've just defined macros over. That won't last long - those functions are going to go away soon, so the changed names are strictly temporary.)
2018-05-24 08:17:13 +00:00
BinarySink_IMPLEMENTATION;
/* (also there's a surrounding implementation struct in misc.c) */
};
strbuf *strbuf_new(void);
void strbuf_free(strbuf *buf);
char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */
void strbuf_catf(strbuf *buf, const char *fmt, ...);
void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap);
/* String-to-Unicode converters that auto-allocate the destination and
* work around the rather deficient interface of mb_to_wc.
*
* These actually live in miscucs.c, not misc.c (the distinction being
* that the former is only linked into tools that also have the main
* Unicode support). */
wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
int toint(unsigned);
char *fgetline(FILE *fp);
char *chomp(char *str);
int strstartswith(const char *s, const char *t);
int strendswith(const char *s, const char *t);
void base64_encode_atom(const unsigned char *data, int n, char *out);
int base64_decode_atom(const char *atom, unsigned char *out);
struct bufchain_granule;
struct bufchain_tag {
struct bufchain_granule *head, *tail;
int buffersize; /* current amount of buffered data */
};
void bufchain_init(bufchain *ch);
void bufchain_clear(bufchain *ch);
int bufchain_size(bufchain *ch);
void bufchain_add(bufchain *ch, const void *data, int len);
void bufchain_prefix(bufchain *ch, void **data, int *len);
void bufchain_consume(bufchain *ch, int len);
void bufchain_fetch(bufchain *ch, void *data, int len);
void bufchain_fetch_consume(bufchain *ch, void *data, int len);
int bufchain_try_fetch_consume(bufchain *ch, void *data, int len);
int validate_manual_hostkey(char *key);
struct tm ltime(void);
/* Wipe sensitive data out of memory that's about to be freed. Simpler
* than memset because we don't need the fill char parameter; also
* attempts (by fiddly use of volatile) to inhibit the compiler from
* over-cleverly trying to optimise the memset away because it knows
* the variable is going out of scope. */
void smemclr(void *b, size_t len);
/* Compare two fixed-length chunks of memory for equality, without
* data-dependent control flow (so an attacker with a very accurate
* stopwatch can't try to guess where the first mismatching byte was).
* Returns 0 for mismatch or 1 for equality (unlike memcmp), hinted at
* by the 'eq' in the name. */
int smemeq(const void *av, const void *bv, size_t len);
/* Extracts an SSH-marshalled string from the start of *data. If
* successful (*datalen is not too small), advances data/datalen past
* the string and returns a pointer to the string itself and its
* length in *stringlen. Otherwise does nothing and returns NULL.
*
* Like strchr, this function can discard const from its parameter.
* Treat it as if it was a family of two functions, one returning a
* non-const string given a non-const pointer, and one taking and
* returning const. */
void *get_ssh_string(int *datalen, const void **data, int *stringlen);
/* Extracts an SSH uint32, similarly. Returns TRUE on success, and
* leaves the extracted value in *ret. */
int get_ssh_uint32(int *datalen, const void **data, unsigned *ret);
/* Given a not-necessarily-zero-terminated string in (length,data)
* form, check if it equals an ordinary C zero-terminated string. */
int match_ssh_id(int stringlen, const void *string, const char *id);
char *buildinfo(const char *newline);
/*
* Debugging functions.
*
* Output goes to debug.log
*
* debug(()) (note the double brackets) is like printf().
*
* dmemdump() and dmemdumpl() both do memory dumps. The difference
* is that dmemdumpl() is more suited for when the memory address is
* important (say because you'll be recording pointer values later
* on). dmemdump() is more concise.
*/
#ifdef DEBUG
void debug_printf(const char *fmt, ...);
void debug_memdump(const void *buf, int len, int L);
#define debug(x) (debug_printf x)
#define dmemdump(buf,len) debug_memdump (buf, len, 0);
#define dmemdumpl(buf,len) debug_memdump (buf, len, 1);
#else
#define debug(x)
#define dmemdump(buf,len)
#define dmemdumpl(buf,len)
#endif
#ifndef lenof
#define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
#endif
#ifndef min
#define min(x,y) ( (x) < (y) ? (x) : (y) )
#endif
#ifndef max
#define max(x,y) ( (x) > (y) ? (x) : (y) )
#endif
#define GET_32BIT_LSB_FIRST(cp) \
(((unsigned long)(unsigned char)(cp)[0]) | \
((unsigned long)(unsigned char)(cp)[1] << 8) | \
((unsigned long)(unsigned char)(cp)[2] << 16) | \
((unsigned long)(unsigned char)(cp)[3] << 24))
#define PUT_32BIT_LSB_FIRST(cp, value) ( \
(cp)[0] = (unsigned char)(value), \
(cp)[1] = (unsigned char)((value) >> 8), \
(cp)[2] = (unsigned char)((value) >> 16), \
(cp)[3] = (unsigned char)((value) >> 24) )
#define GET_16BIT_LSB_FIRST(cp) \
(((unsigned long)(unsigned char)(cp)[0]) | \
((unsigned long)(unsigned char)(cp)[1] << 8))
#define PUT_16BIT_LSB_FIRST(cp, value) ( \
(cp)[0] = (unsigned char)(value), \
(cp)[1] = (unsigned char)((value) >> 8) )
#define GET_32BIT_MSB_FIRST(cp) \
(((unsigned long)(unsigned char)(cp)[0] << 24) | \
((unsigned long)(unsigned char)(cp)[1] << 16) | \
((unsigned long)(unsigned char)(cp)[2] << 8) | \
((unsigned long)(unsigned char)(cp)[3]))
#define GET_32BIT(cp) GET_32BIT_MSB_FIRST(cp)
#define PUT_32BIT_MSB_FIRST(cp, value) ( \
(cp)[0] = (unsigned char)((value) >> 24), \
(cp)[1] = (unsigned char)((value) >> 16), \
(cp)[2] = (unsigned char)((value) >> 8), \
(cp)[3] = (unsigned char)(value) )
#define PUT_32BIT(cp, value) PUT_32BIT_MSB_FIRST(cp, value)
#define GET_16BIT_MSB_FIRST(cp) \
(((unsigned long)(unsigned char)(cp)[0] << 8) | \
((unsigned long)(unsigned char)(cp)[1]))
#define PUT_16BIT_MSB_FIRST(cp, value) ( \
(cp)[0] = (unsigned char)((value) >> 8), \
(cp)[1] = (unsigned char)(value) )
/* Replace NULL with the empty string, permitting an idiom in which we
* get a string (pointer,length) pair that might be NULL,0 and can
* then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */
#define NULLTOEMPTY(s) ((s)?(s):"")
#endif