mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 09:12:24 +00:00
295 lines
10 KiB
C
295 lines
10 KiB
C
|
/* ----------------------------------------------------------------------
|
||
|
* Hardware-accelerated implementation of AES using Arm NEON.
|
||
|
*/
|
||
|
|
||
|
#include "ssh.h"
|
||
|
#include "aes.h"
|
||
|
|
||
|
#if USE_ARM64_NEON_H
|
||
|
#include <arm64_neon.h>
|
||
|
#else
|
||
|
#include <arm_neon.h>
|
||
|
#endif
|
||
|
|
||
|
static bool aes_neon_available(void)
|
||
|
{
|
||
|
/*
|
||
|
* For Arm, we delegate to a per-platform AES detection function,
|
||
|
* because it has to be implemented by asking the operating system
|
||
|
* rather than directly querying the CPU.
|
||
|
*
|
||
|
* That's because Arm systems commonly have multiple cores that
|
||
|
* are not all alike, so any method of querying whether NEON
|
||
|
* crypto instructions work on the _current_ CPU - even one as
|
||
|
* crude as just trying one and catching the SIGILL - wouldn't
|
||
|
* give an answer that you could still rely on the first time the
|
||
|
* OS migrated your process to another CPU.
|
||
|
*/
|
||
|
return platform_aes_neon_available();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Core NEON encrypt/decrypt functions, one per length and direction.
|
||
|
*/
|
||
|
|
||
|
#define NEON_CIPHER(len, repmacro) \
|
||
|
static inline uint8x16_t aes_neon_##len##_e( \
|
||
|
uint8x16_t v, const uint8x16_t *keysched) \
|
||
|
{ \
|
||
|
repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++));); \
|
||
|
v = vaeseq_u8(v, *keysched++); \
|
||
|
return veorq_u8(v, *keysched); \
|
||
|
} \
|
||
|
static inline uint8x16_t aes_neon_##len##_d( \
|
||
|
uint8x16_t v, const uint8x16_t *keysched) \
|
||
|
{ \
|
||
|
repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++));); \
|
||
|
v = vaesdq_u8(v, *keysched++); \
|
||
|
return veorq_u8(v, *keysched); \
|
||
|
}
|
||
|
|
||
|
NEON_CIPHER(128, REP9)
|
||
|
NEON_CIPHER(192, REP11)
|
||
|
NEON_CIPHER(256, REP13)
|
||
|
|
||
|
/*
|
||
|
* The main key expansion.
|
||
|
*/
|
||
|
static void aes_neon_key_expand(
|
||
|
const unsigned char *key, size_t key_words,
|
||
|
uint8x16_t *keysched_e, uint8x16_t *keysched_d)
|
||
|
{
|
||
|
size_t rounds = key_words + 6;
|
||
|
size_t sched_words = (rounds + 1) * 4;
|
||
|
|
||
|
/*
|
||
|
* Store the key schedule as 32-bit integers during expansion, so
|
||
|
* that it's easy to refer back to individual previous words. We
|
||
|
* collect them into the final uint8x16_t form at the end.
|
||
|
*/
|
||
|
uint32_t sched[MAXROUNDKEYS * 4];
|
||
|
|
||
|
unsigned rconpos = 0;
|
||
|
|
||
|
for (size_t i = 0; i < sched_words; i++) {
|
||
|
if (i < key_words) {
|
||
|
sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);
|
||
|
} else {
|
||
|
uint32_t temp = sched[i - 1];
|
||
|
|
||
|
bool rotate_and_round_constant = (i % key_words == 0);
|
||
|
bool sub = rotate_and_round_constant ||
|
||
|
(key_words == 8 && i % 8 == 4);
|
||
|
|
||
|
if (rotate_and_round_constant)
|
||
|
temp = (temp << 24) | (temp >> 8);
|
||
|
|
||
|
if (sub) {
|
||
|
uint32x4_t v32 = vdupq_n_u32(temp);
|
||
|
uint8x16_t v8 = vreinterpretq_u8_u32(v32);
|
||
|
v8 = vaeseq_u8(v8, vdupq_n_u8(0));
|
||
|
v32 = vreinterpretq_u32_u8(v8);
|
||
|
temp = vget_lane_u32(vget_low_u32(v32), 0);
|
||
|
}
|
||
|
|
||
|
if (rotate_and_round_constant) {
|
||
|
assert(rconpos < lenof(aes_key_setup_round_constants));
|
||
|
temp ^= aes_key_setup_round_constants[rconpos++];
|
||
|
}
|
||
|
|
||
|
sched[i] = sched[i - key_words] ^ temp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Combine the key schedule words into uint8x16_t vectors and
|
||
|
* store them in the output context.
|
||
|
*/
|
||
|
for (size_t round = 0; round <= rounds; round++)
|
||
|
keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round));
|
||
|
|
||
|
smemclr(sched, sizeof(sched));
|
||
|
|
||
|
/*
|
||
|
* Now prepare the modified keys for the inverse cipher.
|
||
|
*/
|
||
|
for (size_t eround = 0; eround <= rounds; eround++) {
|
||
|
size_t dround = rounds - eround;
|
||
|
uint8x16_t rkey = keysched_e[eround];
|
||
|
if (eround && dround) /* neither first nor last */
|
||
|
rkey = vaesimcq_u8(rkey);
|
||
|
keysched_d[dround] = rkey;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Auxiliary routine to reverse the byte order of a vector, so that
|
||
|
* the SDCTR IV can be made big-endian for feeding to the cipher.
|
||
|
*
|
||
|
* In fact we don't need to reverse the vector _all_ the way; we leave
|
||
|
* the two lanes in MSW,LSW order, because that makes no difference to
|
||
|
* the efficiency of the increment. That way we only have to reverse
|
||
|
* bytes within each lane in this function.
|
||
|
*/
|
||
|
static inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v)
|
||
|
{
|
||
|
return vrev64q_u8(v);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Auxiliary routine to increment the 128-bit counter used in SDCTR
|
||
|
* mode. There's no instruction to treat a 128-bit vector as a single
|
||
|
* long integer, so instead we have to increment the bottom half
|
||
|
* unconditionally, and the top half if the bottom half started off as
|
||
|
* all 1s (in which case there was about to be a carry).
|
||
|
*/
|
||
|
static inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in)
|
||
|
{
|
||
|
#ifdef __aarch64__
|
||
|
/* There will be a carry if the low 64 bits are all 1s. */
|
||
|
uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF);
|
||
|
uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1);
|
||
|
|
||
|
/* Make a word whose bottom half is unconditionally all 1s, and
|
||
|
* the top half is 'carry', i.e. all 0s most of the time but all
|
||
|
* 1s if we need to increment the top half. Then that word is what
|
||
|
* we need to _subtract_ from the input counter. */
|
||
|
uint64x2_t subtrahend = vcombine_u64(carry, all1);
|
||
|
#else
|
||
|
/* AArch32 doesn't have comparisons that operate on a 64-bit lane,
|
||
|
* so we start by comparing each 32-bit half of the low 64 bits
|
||
|
* _separately_ to all-1s. */
|
||
|
uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF);
|
||
|
uint32x2_t carry = vceq_u32(
|
||
|
vget_high_u32(vreinterpretq_u32_u8(in)), all1);
|
||
|
|
||
|
/* Swap the 32-bit words of the compare output, and AND with the
|
||
|
* unswapped version. Now carry is all 1s iff the bottom half of
|
||
|
* the input counter was all 1s, and all 0s otherwise. */
|
||
|
carry = vand_u32(carry, vrev64_u32(carry));
|
||
|
|
||
|
/* Now make the vector to subtract in the same way as above. */
|
||
|
uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1));
|
||
|
#endif
|
||
|
|
||
|
return vreinterpretq_u8_u64(
|
||
|
vsubq_u64(vreinterpretq_u64_u8(in), subtrahend));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The SSH interface and the cipher modes.
|
||
|
*/
|
||
|
|
||
|
typedef struct aes_neon_context aes_neon_context;
|
||
|
struct aes_neon_context {
|
||
|
uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;
|
||
|
|
||
|
ssh_cipher ciph;
|
||
|
};
|
||
|
|
||
|
static ssh_cipher *aes_neon_new(const ssh_cipheralg *alg)
|
||
|
{
|
||
|
const struct aes_extra *extra = (const struct aes_extra *)alg->extra;
|
||
|
if (!check_availability(extra))
|
||
|
return NULL;
|
||
|
|
||
|
aes_neon_context *ctx = snew(aes_neon_context);
|
||
|
ctx->ciph.vt = alg;
|
||
|
return &ctx->ciph;
|
||
|
}
|
||
|
|
||
|
static void aes_neon_free(ssh_cipher *ciph)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
smemclr(ctx, sizeof(*ctx));
|
||
|
sfree(ctx);
|
||
|
}
|
||
|
|
||
|
static void aes_neon_setkey(ssh_cipher *ciph, const void *vkey)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
const unsigned char *key = (const unsigned char *)vkey;
|
||
|
|
||
|
aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32,
|
||
|
ctx->keysched_e, ctx->keysched_d);
|
||
|
}
|
||
|
|
||
|
static void aes_neon_setiv_cbc(ssh_cipher *ciph, const void *iv)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
ctx->iv = vld1q_u8(iv);
|
||
|
}
|
||
|
|
||
|
static void aes_neon_setiv_sdctr(ssh_cipher *ciph, const void *iv)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
uint8x16_t counter = vld1q_u8(iv);
|
||
|
ctx->iv = aes_neon_sdctr_reverse(counter);
|
||
|
}
|
||
|
|
||
|
typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched);
|
||
|
|
||
|
static inline void aes_cbc_neon_encrypt(
|
||
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
|
||
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
||
|
blk < finish; blk += 16) {
|
||
|
uint8x16_t plaintext = vld1q_u8(blk);
|
||
|
uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv);
|
||
|
uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e);
|
||
|
vst1q_u8(blk, ciphertext);
|
||
|
ctx->iv = ciphertext;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void aes_cbc_neon_decrypt(
|
||
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
|
||
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
||
|
blk < finish; blk += 16) {
|
||
|
uint8x16_t ciphertext = vld1q_u8(blk);
|
||
|
uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d);
|
||
|
uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv);
|
||
|
vst1q_u8(blk, plaintext);
|
||
|
ctx->iv = ciphertext;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void aes_sdctr_neon(
|
||
|
ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt)
|
||
|
{
|
||
|
aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);
|
||
|
|
||
|
for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;
|
||
|
blk < finish; blk += 16) {
|
||
|
uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);
|
||
|
uint8x16_t keystream = encrypt(counter, ctx->keysched_e);
|
||
|
uint8x16_t input = vld1q_u8(blk);
|
||
|
uint8x16_t output = veorq_u8(input, keystream);
|
||
|
vst1q_u8(blk, output);
|
||
|
ctx->iv = aes_neon_sdctr_increment(ctx->iv);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define NEON_ENC_DEC(len) \
|
||
|
static void aes##len##_neon_cbc_encrypt( \
|
||
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
||
|
{ aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); } \
|
||
|
static void aes##len##_neon_cbc_decrypt( \
|
||
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
||
|
{ aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); } \
|
||
|
static void aes##len##_neon_sdctr( \
|
||
|
ssh_cipher *ciph, void *vblk, int blklen) \
|
||
|
{ aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \
|
||
|
|
||
|
NEON_ENC_DEC(128)
|
||
|
NEON_ENC_DEC(192)
|
||
|
NEON_ENC_DEC(256)
|
||
|
|
||
|
AES_EXTRA(_neon);
|
||
|
AES_ALL_VTABLES(_neon, "NEON accelerated");
|