1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/test/fuzzterm.c

219 lines
7.9 KiB
C
Raw Normal View History

2015-10-06 10:02:52 +00:00
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include "putty.h"
#include "dialog.h"
2015-10-06 10:02:52 +00:00
#include "terminal.h"
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static const TermWinVtable fuzz_termwin_vt;
2015-10-06 10:02:52 +00:00
int main(int argc, char **argv)
{
char blk[512];
size_t len;
Terminal *term;
Conf *conf;
struct unicode_data ucsdata;
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
TermWin termwin;
termwin.vt = &fuzz_termwin_vt;
2015-10-06 10:02:52 +00:00
conf = conf_new();
do_defaults(NULL, conf);
init_ucs(&ucsdata, conf_get_str(conf, CONF_line_codepage),
conf_get_bool(conf, CONF_utf8_override),
CS_NONE, conf_get_int(conf, CONF_vtmode));
2015-10-06 10:02:52 +00:00
term = term_init(conf, &ucsdata, &termwin);
term_size(term, 24, 80, 10000);
term->ldisc = NULL;
/* Tell american fuzzy lop that this is a good place to fork. */
#ifdef __AFL_HAVE_MANUAL_CONTROL
__AFL_INIT();
#endif
while (!feof(stdin)) {
len = fread(blk, 1, sizeof(blk), stdin);
term_data(term, blk, len);
}
term_update(term);
return 0;
2015-10-06 10:02:52 +00:00
}
/* functions required by terminal.c */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool fuzz_setup_draw_ctx(TermWin *tw) { return true; }
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static void fuzz_draw_text(
TermWin *tw, int x, int y, wchar_t *text, int len,
unsigned long attr, int lattr, truecolour tc)
{
int i;
printf("TEXT[attr=%08lx,lattr=%02x]@(%d,%d):", attr, lattr, x, y);
for (i = 0; i < len; i++) {
printf(" %x", (unsigned)text[i]);
}
printf("\n");
}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static void fuzz_draw_cursor(
TermWin *tw, int x, int y, wchar_t *text, int len,
unsigned long attr, int lattr, truecolour tc)
{
int i;
printf("CURS[attr=%08lx,lattr=%02x]@(%d,%d):", attr, lattr, x, y);
for (i = 0; i < len; i++) {
printf(" %x", (unsigned)text[i]);
}
printf("\n");
}
static void fuzz_draw_trust_sigil(TermWin *tw, int x, int y)
{
printf("TRUST@(%d,%d)\n", x, y);
}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static int fuzz_char_width(TermWin *tw, int uc) { return 1; }
static void fuzz_free_draw_ctx(TermWin *tw) {}
static void fuzz_set_cursor_pos(TermWin *tw, int x, int y) {}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static void fuzz_set_raw_mouse_mode(TermWin *tw, bool enable) {}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static void fuzz_set_scrollbar(TermWin *tw, int total, int start, int page) {}
static void fuzz_bell(TermWin *tw, int mode) {}
static void fuzz_clip_write(
TermWin *tw, int clipboard, wchar_t *text, int *attrs,
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
truecolour *colours, int len, bool must_deselect) {}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static void fuzz_clip_request_paste(TermWin *tw, int clipboard) {}
static void fuzz_refresh(TermWin *tw) {}
static void fuzz_request_resize(TermWin *tw, int w, int h) {}
static void fuzz_set_title(TermWin *tw, const char *title, int codepage) {}
static void fuzz_set_icon_title(TermWin *tw, const char *icontitle, int cp) {}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static void fuzz_set_minimised(TermWin *tw, bool minimised) {}
static void fuzz_set_maximised(TermWin *tw, bool maximised) {}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static void fuzz_move(TermWin *tw, int x, int y) {}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static void fuzz_set_zorder(TermWin *tw, bool top) {}
Centralise palette setup into terminal.c. Now terminal.c makes nearly all the decisions about what the colour palette should actually contain: it does the job of reading the GUI-configurable colours out of Conf, and also the job of making up the rest of the xterm-256 palette. The only exception is that TermWin can provide a method to override some of the default colours, which on Windows is used to implement the 'Use system colours' config option. This saves code overall, partly because the front ends don't have to be able to send palette data back to the Terminal any more (the Terminal keeps the master copy and can answer palette-query escape sequences from its own knowledge), and also because now there's only one copy of the xterm-256 palette setup code (previously gtkwin.c and window.c each had their own version of it). In this rewrite, I've also introduced a multi-layered storage system for the palette data in Terminal. One layer contains the palette information derived from Conf; the next contains platform overrides (currently just Windows's 'Use system colours'); the last one contains overrides set by escape sequences in the middle of the session. The topmost two layers can each _conditionally_ override the ones below. As a result, if a server-side application manually resets (say) the default fg and bg colours in mid-session to something that works well in a particular application, those changes won't be wiped out by a change in the Windows system colours or the Conf, which they would have been before. Instead, changes in Conf or the system colours alter the lower layers of the structure, but then when palette_rebuild is called, the upper layer continues to override them, until a palette reset (ESC]R) or terminal reset (e.g. ESC c) removes those upper-layer changes. This seems like a more consistent strategy, in that the same set of configuration settings will produce the same end result regardless of what order they were applied in. The palette-related methods in TermWin have had a total rework. palette_get and palette_reset are both gone; palette_set can now set a contiguous range of colours in one go; and the new palette_get_overrides replaces window.c's old systopalette().
2021-02-07 19:59:21 +00:00
static void fuzz_palette_set(TermWin *tw, unsigned start, unsigned ncolours,
const rgb *colours) {}
static void fuzz_palette_get_overrides(TermWin *tw, Terminal *term) {}
Proper buffer management between terminal and backend. The return value of term_data() is used as the return value from the GUI-terminal versions of the Seat output method, which means backends will take it to be the amount of standard-output data currently buffered, and exert back-pressure on the remote peer if it gets too big (e.g. by ceasing to extend the window in that particular SSH-2 channel). Historically, as a comment in term_data() explained, we always just returned 0 from that function, on the basis that we were processing all the terminal data through our terminal emulation code immediately, and never retained any of it in the buffer at all. If the terminal emulation code were to start running slowly, then it would slow down the _whole_ PuTTY system, due to single-threadedness, and back-pressure of a sort would be exerted on the remote by it simply failing to get round to reading from the network socket. But by the time we got back to the top level of term_data(), we'd have finished reading all the data we had, so it was still appropriate to return 0. That comment is still correct if you're thinking about the limiting factor on terminal data processing being the CPU usage in term_out(). But now that's no longer the whole story, because sometimes we leave data in term->inbuf without having processed it: during drag-selects in the terminal window, and (just introduced) while waiting for the response to a pending window resize request. For both those reasons, we _don't_ always have a buffer size of zero when we return from term_data(). So now that hole in our buffer size management is filled in: term_data() returns the true size of the remaining unprocessed terminal output, so that back-pressure will be exerted if the terminal is currently not consuming it. And when processing resumes and we start to clear our backlog, we call backend_unthrottle to let the backend know it can relax the back-pressure if necessary.
2021-12-12 10:57:23 +00:00
static void fuzz_unthrottle(TermWin *tw, size_t size) {}
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
static const TermWinVtable fuzz_termwin_vt = {
.setup_draw_ctx = fuzz_setup_draw_ctx,
.draw_text = fuzz_draw_text,
.draw_cursor = fuzz_draw_cursor,
.draw_trust_sigil = fuzz_draw_trust_sigil,
.char_width = fuzz_char_width,
.free_draw_ctx = fuzz_free_draw_ctx,
.set_cursor_pos = fuzz_set_cursor_pos,
.set_raw_mouse_mode = fuzz_set_raw_mouse_mode,
.set_scrollbar = fuzz_set_scrollbar,
.bell = fuzz_bell,
.clip_write = fuzz_clip_write,
.clip_request_paste = fuzz_clip_request_paste,
.refresh = fuzz_refresh,
.request_resize = fuzz_request_resize,
.set_title = fuzz_set_title,
.set_icon_title = fuzz_set_icon_title,
.set_minimised = fuzz_set_minimised,
.set_maximised = fuzz_set_maximised,
.move = fuzz_move,
.set_zorder = fuzz_set_zorder,
.palette_set = fuzz_palette_set,
Centralise palette setup into terminal.c. Now terminal.c makes nearly all the decisions about what the colour palette should actually contain: it does the job of reading the GUI-configurable colours out of Conf, and also the job of making up the rest of the xterm-256 palette. The only exception is that TermWin can provide a method to override some of the default colours, which on Windows is used to implement the 'Use system colours' config option. This saves code overall, partly because the front ends don't have to be able to send palette data back to the Terminal any more (the Terminal keeps the master copy and can answer palette-query escape sequences from its own knowledge), and also because now there's only one copy of the xterm-256 palette setup code (previously gtkwin.c and window.c each had their own version of it). In this rewrite, I've also introduced a multi-layered storage system for the palette data in Terminal. One layer contains the palette information derived from Conf; the next contains platform overrides (currently just Windows's 'Use system colours'); the last one contains overrides set by escape sequences in the middle of the session. The topmost two layers can each _conditionally_ override the ones below. As a result, if a server-side application manually resets (say) the default fg and bg colours in mid-session to something that works well in a particular application, those changes won't be wiped out by a change in the Windows system colours or the Conf, which they would have been before. Instead, changes in Conf or the system colours alter the lower layers of the structure, but then when palette_rebuild is called, the upper layer continues to override them, until a palette reset (ESC]R) or terminal reset (e.g. ESC c) removes those upper-layer changes. This seems like a more consistent strategy, in that the same set of configuration settings will produce the same end result regardless of what order they were applied in. The palette-related methods in TermWin have had a total rework. palette_get and palette_reset are both gone; palette_set can now set a contiguous range of colours in one go; and the new palette_get_overrides replaces window.c's old systopalette().
2021-02-07 19:59:21 +00:00
.palette_get_overrides = fuzz_palette_get_overrides,
Proper buffer management between terminal and backend. The return value of term_data() is used as the return value from the GUI-terminal versions of the Seat output method, which means backends will take it to be the amount of standard-output data currently buffered, and exert back-pressure on the remote peer if it gets too big (e.g. by ceasing to extend the window in that particular SSH-2 channel). Historically, as a comment in term_data() explained, we always just returned 0 from that function, on the basis that we were processing all the terminal data through our terminal emulation code immediately, and never retained any of it in the buffer at all. If the terminal emulation code were to start running slowly, then it would slow down the _whole_ PuTTY system, due to single-threadedness, and back-pressure of a sort would be exerted on the remote by it simply failing to get round to reading from the network socket. But by the time we got back to the top level of term_data(), we'd have finished reading all the data we had, so it was still appropriate to return 0. That comment is still correct if you're thinking about the limiting factor on terminal data processing being the CPU usage in term_out(). But now that's no longer the whole story, because sometimes we leave data in term->inbuf without having processed it: during drag-selects in the terminal window, and (just introduced) while waiting for the response to a pending window resize request. For both those reasons, we _don't_ always have a buffer size of zero when we return from term_data(). So now that hole in our buffer size management is filled in: term_data() returns the true size of the remaining unprocessed terminal output, so that back-pressure will be exerted if the terminal is currently not consuming it. And when processing resumes and we start to clear our backlog, we call backend_unthrottle to let the backend know it can relax the back-pressure if necessary.
2021-12-12 10:57:23 +00:00
.unthrottle = fuzz_unthrottle,
Remove the 'Frontend' type and replace it with a vtable. After the recent Seat and LogContext revamps, _nearly_ all the remaining uses of the type 'Frontend' were in terminal.c, which needs all sorts of interactions with the GUI window the terminal lives in, from the obvious (actually drawing text on the window, reading and writing the clipboard) to the obscure (minimising, maximising and moving the window in response to particular escape sequences). All of those functions are now provided by an abstraction called TermWin. The few remaining uses of Frontend after _that_ are internal to a particular platform directory, so as to spread the implementation of that particular kind of Frontend between multiple source files; so I've renamed all of those so that they take a more specifically named type that refers to the particular implementation rather than the general abstraction. So now the name 'Frontend' no longer exists in the code base at all, and everywhere one used to be used, it's completely clear whether it was operating in one of Frontend's three abstract roles (and if so, which), or whether it was specific to a particular implementation. Another type that's disappeared is 'Context', which used to be a typedef defined to something different on each platform, describing whatever short-lived resources were necessary to draw on the terminal window: the front end would provide a ready-made one when calling term_paint, and the terminal could request one with get_ctx/free_ctx if it wanted to do proactive window updates. Now that drawing context lives inside the TermWin itself, because there was never any need to have two of those contexts live at the same time. (Another minor API change is that the window-title functions - both reading and writing - have had a missing 'const' added to their char * parameters / return values.) I don't expect this change to enable any particularly interesting new functionality (in particular, I have no plans that need more than one implementation of TermWin in the same application). But it completes the tidying-up that began with the Seat and LogContext rework.
2018-10-25 17:44:04 +00:00
};
2015-10-06 10:02:52 +00:00
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
void ldisc_send(Ldisc *ldisc, const void *buf, int len, bool interactive) {}
void ldisc_echoedit_update(Ldisc *ldisc) {}
Complete rework of terminal userpass input system. The system for handling seat_get_userpass_input has always been structured differently between GUI PuTTY and CLI tools like Plink. In the CLI tools, password input is read directly from the OS terminal/console device by console_get_userpass_input; this means that you need to ensure the same terminal input data _hasn't_ already been consumed by the main event loop and sent on to the backend. This is achieved by the backend_sendok() method, which tells the event loop when the backend has finished issuing password prompts, and hence, when it's safe to start passing standard input to backend_send(). But in the GUI tools, input generated by the terminal window has always been sent straight to backend_send(), regardless of whether backend_sendok() says it wants it. So the terminal-based implementation of username and password prompts has to work by consuming input data that had _already_ been passed to the backend - hence, any backend that needs to do that must keep its input on a bufchain, and pass that bufchain to seat_get_userpass_input. It's awkward that these two totally different systems coexist in the first place. And now that SSH proxying needs to present interactive prompts of its own, it's clear which one should win: the CLI style is the Right Thing. So this change reworks the GUI side of the mechanism to be more similar: terminal data now goes into a queue in the Ldisc, and is not sent on to the backend until the backend says it's ready for it via backend_sendok(). So terminal-based userpass prompts can now consume data directly from that queue during the connection setup stage. As a result, the 'bufchain *' parameter has vanished from all the userpass_input functions (both the official implementations of the Seat trait method, and term_get_userpass_input() to which some of those implementations delegate). The only function that actually used that bufchain, namely term_get_userpass_input(), now instead reads from the ldisc's input queue via a couple of new Ldisc functions. (Not _trivial_ functions, since input buffered by Ldisc can be a mixture of raw bytes and session specials like SS_EOL! The input queue inside Ldisc is a bufchain containing a fiddly binary encoding that can represent an arbitrary interleaving of those things.) This greatly simplifies the calls to seat_get_userpass_input in backends, which now don't have to mess about with passing their own user_input bufchain around, or toggling their want_user_input flag back and forth to request data to put on to that bufchain. But the flip side is that now there has to be some _other_ method for notifying the terminal when there's more input to be consumed during an interactive prompt, and for notifying the backend when prompt input has finished so that it can proceed to the next stage of the protocol. This is done by a pair of extra callbacks: when more data is put on to Ldisc's input queue, it triggers a call to term_get_userpass_input, and when term_get_userpass_input finishes, it calls a callback function provided in the prompts_t. Therefore, any use of a prompts_t which *might* be asynchronous must fill in the latter callback when setting up the prompts_t. In SSH, the callback is centralised into a common PPL helper function, which reinvokes the same PPL's process_queue coroutine; in rlogin we have to set it up ourselves. I'm sorry for this large and sprawling patch: I tried fairly hard to break it up into individually comprehensible sub-patches, but I just couldn't tease out any part of it that would stand sensibly alone.
2021-09-14 10:57:21 +00:00
bool ldisc_has_input_buffered(Ldisc *ldisc) { return false; }
LdiscInputToken ldisc_get_input_token(Ldisc *ldisc)
{ unreachable("This fake ldisc never has any buffered input"); }
void ldisc_enable_prompt_callback(Ldisc *ldisc, prompts_t *p)
{ unreachable("This fake ldisc should never be used for user/pass prompts"); }
2015-10-06 10:02:52 +00:00
void modalfatalbox(const char *fmt, ...) { exit(0); }
void nonfatal(const char *fmt, ...) { }
/* needed by timing.c */
void timer_change_notify(unsigned long next) { }
/* needed by config.c */
2015-10-06 10:02:52 +00:00
void dlg_radiobutton_set(union control *ctrl, dlgparam *dp, int whichbutton) { }
int dlg_radiobutton_get(union control *ctrl, dlgparam *dp) { return 0; }
void dlg_checkbox_set(union control *ctrl, dlgparam *dp, bool checked) { }
bool dlg_checkbox_get(union control *ctrl, dlgparam *dp) { return false; }
void dlg_editbox_set(union control *ctrl, dlgparam *dp, char const *text) { }
char *dlg_editbox_get(union control *ctrl, dlgparam *dp)
{ return dupstr("moo"); }
void dlg_listbox_clear(union control *ctrl, dlgparam *dp) { }
void dlg_listbox_del(union control *ctrl, dlgparam *dp, int index) { }
void dlg_listbox_add(union control *ctrl, dlgparam *dp, char const *text) { }
void dlg_listbox_addwithid(union control *ctrl, dlgparam *dp,
char const *text, int id) { }
int dlg_listbox_getid(union control *ctrl, dlgparam *dp, int index)
{ return 0; }
int dlg_listbox_index(union control *ctrl, dlgparam *dp) { return -1; }
bool dlg_listbox_issel(union control *ctrl, dlgparam *dp, int index)
{ return false; }
void dlg_listbox_select(union control *ctrl, dlgparam *dp, int index) { }
void dlg_text_set(union control *ctrl, dlgparam *dp, char const *text) { }
void dlg_filesel_set(union control *ctrl, dlgparam *dp, Filename *fn) { }
Filename *dlg_filesel_get(union control *ctrl, dlgparam *dp) { return NULL; }
void dlg_fontsel_set(union control *ctrl, dlgparam *dp, FontSpec *fn) { }
FontSpec *dlg_fontsel_get(union control *ctrl, dlgparam *dp) { return NULL; }
void dlg_update_start(union control *ctrl, dlgparam *dp) { }
void dlg_update_done(union control *ctrl, dlgparam *dp) { }
void dlg_set_focus(union control *ctrl, dlgparam *dp) { }
void dlg_label_change(union control *ctrl, dlgparam *dp, char const *text) { }
union control *dlg_last_focused(union control *ctrl, dlgparam *dp)
{ return NULL; }
void dlg_beep(dlgparam *dp) { }
void dlg_error_msg(dlgparam *dp, const char *msg) { }
void dlg_end(dlgparam *dp, int value) { }
void dlg_coloursel_start(union control *ctrl, dlgparam *dp,
int r, int g, int b) { }
bool dlg_coloursel_results(union control *ctrl, dlgparam *dp,
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
int *r, int *g, int *b) { return false; }
void dlg_refresh(union control *ctrl, dlgparam *dp) { }
Don't implicitly load a session if Session pane not active. If you select an entry in the saved sessions list box, but without double-clicking to actually load it, and then you hit OK, the config- box code will automatically load it. That just saves one click in a common situation. But in order to load that session, the config-box system first has to ask the list-box control _which_ session is selected. On Windows, this causes an assertion failure if the user has switched away from the Session panel to some other panel of the config box, because when the list box isn't on screen, its Windows control object is actually destroyed. I think a sensible answer is that we shouldn't be doing that implicit load behaviour in any case if the list box isn't _visible_: silently loading and launching a session someone selected a lot of UI actions ago wasn't really the point. So now I make that behaviour only happen when the list box (i.e. the Session panel) _is_ visible. That should prevent the assertion failure on Windows, but the UI effect is cross- platform, applying even on GTK where the control objects for invisible panels persist and so the assertion failure didn't happen. I think it's a reasonable UI change to make globally. In order to implement it, I've had to invent a new query function so that config.c can tell whether a given control is visible. In order to do that on GTK, I had to give each control a pointer to the 'selparam' structure describing its config-box pane, so that query function could check it against the current one - and in order to do _that_, I had to first arrange that those 'selparam' structures have stable addresses from the moment they're first created, which meant adding a layer of indirection so that the array of them in the top-level dlgparam structure is now an array of _pointers_ rather than of actual structs. (That way, realloc half way through config box creation can't invalidate the important pointer values.)
2019-06-29 16:12:47 +00:00
bool dlg_is_visible(union control *ctrl, dlgparam *dp) { return false; }
2015-10-06 10:02:52 +00:00
const int ngsslibs = 0;
const char *const gsslibnames[0] = { };
const struct keyvalwhere gsslibkeywords[0] = { };
/*
* Default settings that are specific to Unix plink.
*/
char *platform_default_s(const char *name)
{
if (!strcmp(name, "TermType"))
return dupstr(getenv("TERM"));
2015-10-06 10:02:52 +00:00
if (!strcmp(name, "SerialLine"))
return dupstr("/dev/ttyS0");
2015-10-06 10:02:52 +00:00
return NULL;
}
bool platform_default_b(const char *name, bool def)
{
return def;
}
2015-10-06 10:02:52 +00:00
int platform_default_i(const char *name, int def)
{
return def;
}
FontSpec *platform_default_fontspec(const char *name)
{
return fontspec_new("");
}
Filename *platform_default_filename(const char *name)
{
if (!strcmp(name, "LogFileName"))
return filename_from_str("putty.log");
2015-10-06 10:02:52 +00:00
else
return filename_from_str("");
2015-10-06 10:02:52 +00:00
}
char *x_get_default(const char *key)
{
return NULL; /* this is a stub */
2015-10-06 10:02:52 +00:00
}