1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/x11fwd.c

801 lines
24 KiB
C
Raw Normal View History

/*
* Platform-independent bits of X11 forwarding.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
#include "putty.h"
#include "ssh.h"
#include "tree234.h"
#define GET_16BIT(endian, cp) \
(endian=='B' ? GET_16BIT_MSB_FIRST(cp) : GET_16BIT_LSB_FIRST(cp))
#define PUT_16BIT(endian, cp, val) \
(endian=='B' ? PUT_16BIT_MSB_FIRST(cp, val) : PUT_16BIT_LSB_FIRST(cp, val))
const char *const x11_authnames[] = {
"", "MIT-MAGIC-COOKIE-1", "XDM-AUTHORIZATION-1"
};
struct XDMSeen {
unsigned int time;
unsigned char clientid[6];
};
struct X11Connection {
const struct plug_function_table *fn;
/* the above variable absolutely *must* be the first in this structure */
unsigned char firstpkt[12]; /* first X data packet */
struct X11Display *disp;
char *auth_protocol;
unsigned char *auth_data;
int data_read, auth_plen, auth_psize, auth_dlen, auth_dsize;
int verified;
int throttled, throttle_override;
unsigned long peer_ip;
int peer_port;
struct ssh_channel *c; /* channel structure held by ssh.c */
Socket s;
};
static int xdmseen_cmp(void *a, void *b)
{
struct XDMSeen *sa = a, *sb = b;
return sa->time > sb->time ? 1 :
sa->time < sb->time ? -1 :
memcmp(sa->clientid, sb->clientid, sizeof(sa->clientid));
}
/* Do-nothing "plug" implementation, used by x11_setup_display() when it
* creates a trial connection (and then immediately closes it).
* XXX: bit out of place here, could in principle live in a platform-
* independent network.c or something */
static void dummy_plug_log(Plug p, int type, SockAddr addr, int port,
const char *error_msg, int error_code) { }
static int dummy_plug_closing
(Plug p, const char *error_msg, int error_code, int calling_back)
{ return 1; }
static int dummy_plug_receive(Plug p, int urgent, char *data, int len)
{ return 1; }
static void dummy_plug_sent(Plug p, int bufsize) { }
static int dummy_plug_accepting(Plug p, accept_fn_t constructor, accept_ctx_t ctx) { return 1; }
static const struct plug_function_table dummy_plug = {
dummy_plug_log, dummy_plug_closing, dummy_plug_receive,
dummy_plug_sent, dummy_plug_accepting
};
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
struct X11Display *x11_setup_display(char *display, int authtype, Conf *conf)
{
struct X11Display *disp = snew(struct X11Display);
char *localcopy;
int i;
if (!display || !*display) {
localcopy = platform_get_x_display();
if (!localcopy || !*localcopy) {
sfree(localcopy);
localcopy = dupstr(":0"); /* plausible default for any platform */
}
} else
localcopy = dupstr(display);
/*
* Parse the display name.
*
* We expect this to have one of the following forms:
*
* - the standard X format which looks like
* [ [ protocol '/' ] host ] ':' displaynumber [ '.' screennumber ]
* (X11 also permits a double colon to indicate DECnet, but
* that's not our problem, thankfully!)
*
* - only seen in the wild on MacOS (so far): a pathname to a
* Unix-domain socket, which will typically and confusingly
* end in ":0", and which I'm currently distinguishing from
* the standard scheme by noting that it starts with '/'.
*/
if (localcopy[0] == '/') {
disp->unixsocketpath = localcopy;
disp->unixdomain = TRUE;
disp->hostname = NULL;
disp->displaynum = -1;
disp->screennum = 0;
disp->addr = NULL;
} else {
char *colon, *dot, *slash;
char *protocol, *hostname;
colon = strrchr(localcopy, ':');
if (!colon) {
sfree(disp);
sfree(localcopy);
return NULL; /* FIXME: report a specific error? */
}
*colon++ = '\0';
dot = strchr(colon, '.');
if (dot)
*dot++ = '\0';
disp->displaynum = atoi(colon);
if (dot)
disp->screennum = atoi(dot);
else
disp->screennum = 0;
protocol = NULL;
hostname = localcopy;
if (colon > localcopy) {
slash = strchr(localcopy, '/');
if (slash) {
*slash++ = '\0';
protocol = localcopy;
hostname = slash;
}
}
disp->hostname = *hostname ? dupstr(hostname) : NULL;
if (protocol)
disp->unixdomain = (!strcmp(protocol, "local") ||
!strcmp(protocol, "unix"));
else if (!*hostname || !strcmp(hostname, "unix"))
disp->unixdomain = platform_uses_x11_unix_by_default;
else
disp->unixdomain = FALSE;
if (!disp->hostname && !disp->unixdomain)
disp->hostname = dupstr("localhost");
disp->unixsocketpath = NULL;
disp->addr = NULL;
sfree(localcopy);
}
/*
* Look up the display hostname, if we need to.
*/
if (!disp->unixdomain) {
const char *err;
disp->port = 6000 + disp->displaynum;
disp->addr = name_lookup(disp->hostname, disp->port,
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
&disp->realhost, conf, ADDRTYPE_UNSPEC);
if ((err = sk_addr_error(disp->addr)) != NULL) {
sk_addr_free(disp->addr);
sfree(disp->hostname);
sfree(disp->unixsocketpath);
sfree(disp);
return NULL; /* FIXME: report an error */
}
}
/*
* Try upgrading an IP-style localhost display to a Unix-socket
* display (as the standard X connection libraries do).
*/
if (!disp->unixdomain && sk_address_is_local(disp->addr)) {
SockAddr ux = platform_get_x11_unix_address(NULL, disp->displaynum);
const char *err = sk_addr_error(ux);
if (!err) {
/* Create trial connection to see if there is a useful Unix-domain
* socket */
const struct plug_function_table *dummy = &dummy_plug;
Socket s = sk_new(sk_addr_dup(ux), 0, 0, 0, 0, 0, (Plug)&dummy);
err = sk_socket_error(s);
sk_close(s);
}
if (err) {
sk_addr_free(ux);
} else {
sk_addr_free(disp->addr);
disp->unixdomain = TRUE;
disp->addr = ux;
/* Fill in the rest in a moment */
}
}
if (disp->unixdomain) {
if (!disp->addr)
disp->addr = platform_get_x11_unix_address(disp->unixsocketpath,
disp->displaynum);
if (disp->unixsocketpath)
disp->realhost = dupstr(disp->unixsocketpath);
else
disp->realhost = dupprintf("unix:%d", disp->displaynum);
disp->port = 0;
}
/*
* Invent the remote authorisation details.
*/
if (authtype == X11_MIT) {
disp->remoteauthproto = X11_MIT;
/* MIT-MAGIC-COOKIE-1. Cookie size is 128 bits (16 bytes). */
disp->remoteauthdata = snewn(16, unsigned char);
for (i = 0; i < 16; i++)
disp->remoteauthdata[i] = random_byte();
disp->remoteauthdatalen = 16;
disp->xdmseen = NULL;
} else {
assert(authtype == X11_XDM);
disp->remoteauthproto = X11_XDM;
/* XDM-AUTHORIZATION-1. Cookie size is 16 bytes; byte 8 is zero. */
disp->remoteauthdata = snewn(16, unsigned char);
for (i = 0; i < 16; i++)
disp->remoteauthdata[i] = (i == 8 ? 0 : random_byte());
disp->remoteauthdatalen = 16;
disp->xdmseen = newtree234(xdmseen_cmp);
}
disp->remoteauthprotoname = dupstr(x11_authnames[disp->remoteauthproto]);
disp->remoteauthdatastring = snewn(disp->remoteauthdatalen * 2 + 1, char);
for (i = 0; i < disp->remoteauthdatalen; i++)
sprintf(disp->remoteauthdatastring + i*2, "%02x",
disp->remoteauthdata[i]);
/*
* Fetch the local authorisation details.
*/
disp->localauthproto = X11_NO_AUTH;
disp->localauthdata = NULL;
disp->localauthdatalen = 0;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
platform_get_x11_auth(disp, conf);
return disp;
}
void x11_free_display(struct X11Display *disp)
{
if (disp->xdmseen != NULL) {
struct XDMSeen *seen;
while ((seen = delpos234(disp->xdmseen, 0)) != NULL)
sfree(seen);
freetree234(disp->xdmseen);
}
sfree(disp->hostname);
sfree(disp->unixsocketpath);
if (disp->localauthdata)
smemclr(disp->localauthdata, disp->localauthdatalen);
sfree(disp->localauthdata);
if (disp->remoteauthdata)
smemclr(disp->remoteauthdata, disp->remoteauthdatalen);
sfree(disp->remoteauthdata);
sfree(disp->remoteauthprotoname);
sfree(disp->remoteauthdatastring);
sk_addr_free(disp->addr);
sfree(disp);
}
#define XDM_MAXSKEW 20*60 /* 20 minute clock skew should be OK */
static char *x11_verify(unsigned long peer_ip, int peer_port,
struct X11Display *disp, char *proto,
unsigned char *data, int dlen)
{
if (strcmp(proto, x11_authnames[disp->remoteauthproto]) != 0)
return "wrong authorisation protocol attempted";
if (disp->remoteauthproto == X11_MIT) {
if (dlen != disp->remoteauthdatalen)
return "MIT-MAGIC-COOKIE-1 data was wrong length";
if (memcmp(disp->remoteauthdata, data, dlen) != 0)
return "MIT-MAGIC-COOKIE-1 data did not match";
}
if (disp->remoteauthproto == X11_XDM) {
unsigned long t;
time_t tim;
int i;
struct XDMSeen *seen, *ret;
if (dlen != 24)
return "XDM-AUTHORIZATION-1 data was wrong length";
if (peer_port == -1)
return "cannot do XDM-AUTHORIZATION-1 without remote address data";
des_decrypt_xdmauth(disp->remoteauthdata+9, data, 24);
if (memcmp(disp->remoteauthdata, data, 8) != 0)
return "XDM-AUTHORIZATION-1 data failed check"; /* cookie wrong */
if (GET_32BIT_MSB_FIRST(data+8) != peer_ip)
return "XDM-AUTHORIZATION-1 data failed check"; /* IP wrong */
if ((int)GET_16BIT_MSB_FIRST(data+12) != peer_port)
return "XDM-AUTHORIZATION-1 data failed check"; /* port wrong */
t = GET_32BIT_MSB_FIRST(data+14);
for (i = 18; i < 24; i++)
if (data[i] != 0) /* zero padding wrong */
return "XDM-AUTHORIZATION-1 data failed check";
tim = time(NULL);
if (abs(t - tim) > XDM_MAXSKEW)
return "XDM-AUTHORIZATION-1 time stamp was too far out";
seen = snew(struct XDMSeen);
seen->time = t;
memcpy(seen->clientid, data+8, 6);
assert(disp->xdmseen != NULL);
ret = add234(disp->xdmseen, seen);
if (ret != seen) {
sfree(seen);
return "XDM-AUTHORIZATION-1 data replayed";
}
/* While we're here, purge entries too old to be replayed. */
for (;;) {
seen = index234(disp->xdmseen, 0);
assert(seen != NULL);
if (t - seen->time <= XDM_MAXSKEW)
break;
sfree(delpos234(disp->xdmseen, 0));
}
}
/* implement other protocols here if ever required */
return NULL;
}
void x11_get_auth_from_authfile(struct X11Display *disp,
const char *authfilename)
{
FILE *authfp;
char *buf, *ptr, *str[4];
int len[4];
int family, protocol;
int ideal_match = FALSE;
char *ourhostname;
/*
* Normally we should look for precisely the details specified in
* `disp'. However, there's an oddity when the display is local:
* displays like "localhost:0" usually have their details stored
* in a Unix-domain-socket record (even if there isn't actually a
* real Unix-domain socket available, as with OpenSSH's proxy X11
* server).
*
* This is apparently a fudge to get round the meaninglessness of
* "localhost" in a shared-home-directory context -- xauth entries
* for Unix-domain sockets already disambiguate this by storing
* the *local* hostname in the conveniently-blank hostname field,
* but IP "localhost" records couldn't do this. So, typically, an
* IP "localhost" entry in the auth database isn't present and if
* it were it would be ignored.
*
* However, we don't entirely trust that (say) Windows X servers
* won't rely on a straight "localhost" entry, bad idea though
* that is; so if we can't find a Unix-domain-socket entry we'll
* fall back to an IP-based entry if we can find one.
*/
int localhost = !disp->unixdomain && sk_address_is_local(disp->addr);
authfp = fopen(authfilename, "rb");
if (!authfp)
return;
ourhostname = get_hostname();
/* Records in .Xauthority contain four strings of up to 64K each */
buf = snewn(65537 * 4, char);
while (!ideal_match) {
int c, i, j, match = FALSE;
#define GET do { c = fgetc(authfp); if (c == EOF) goto done; c = (unsigned char)c; } while (0)
/* Expect a big-endian 2-byte number giving address family */
GET; family = c;
GET; family = (family << 8) | c;
/* Then expect four strings, each composed of a big-endian 2-byte
* length field followed by that many bytes of data */
ptr = buf;
for (i = 0; i < 4; i++) {
GET; len[i] = c;
GET; len[i] = (len[i] << 8) | c;
str[i] = ptr;
for (j = 0; j < len[i]; j++) {
GET; *ptr++ = c;
}
*ptr++ = '\0';
}
#undef GET
/*
* Now we have a full X authority record in memory. See
* whether it matches the display we're trying to
* authenticate to.
*
* The details we've just read should be interpreted as
* follows:
*
* - 'family' is the network address family used to
* connect to the display. 0 means IPv4; 6 means IPv6;
* 256 means Unix-domain sockets.
*
* - str[0] is the network address itself. For IPv4 and
* IPv6, this is a string of binary data of the
* appropriate length (respectively 4 and 16 bytes)
* representing the address in big-endian format, e.g.
* 7F 00 00 01 means IPv4 localhost. For Unix-domain
* sockets, this is the host name of the machine on
* which the Unix-domain display resides (so that an
* .Xauthority file on a shared file system can contain
* authority entries for Unix-domain displays on
* several machines without them clashing).
*
* - str[1] is the display number. I've no idea why
* .Xauthority stores this as a string when it has a
* perfectly good integer format, but there we go.
*
* - str[2] is the authorisation method, encoded as its
* canonical string name (i.e. "MIT-MAGIC-COOKIE-1",
* "XDM-AUTHORIZATION-1" or something we don't
* recognise).
*
* - str[3] is the actual authorisation data, stored in
* binary form.
*/
if (disp->displaynum < 0 || disp->displaynum != atoi(str[1]))
continue; /* not the one */
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
if (!strcmp(str[2], x11_authnames[protocol]))
break;
if (protocol == lenof(x11_authnames))
continue; /* don't recognise this protocol, look for another */
switch (family) {
case 0: /* IPv4 */
if (!disp->unixdomain &&
sk_addrtype(disp->addr) == ADDRTYPE_IPV4) {
char buf[4];
sk_addrcopy(disp->addr, buf);
if (len[0] == 4 && !memcmp(str[0], buf, 4)) {
match = TRUE;
/* If this is a "localhost" entry, note it down
* but carry on looking for a Unix-domain entry. */
ideal_match = !localhost;
}
}
break;
case 6: /* IPv6 */
if (!disp->unixdomain &&
sk_addrtype(disp->addr) == ADDRTYPE_IPV6) {
char buf[16];
sk_addrcopy(disp->addr, buf);
if (len[0] == 16 && !memcmp(str[0], buf, 16)) {
match = TRUE;
ideal_match = !localhost;
}
}
break;
case 256: /* Unix-domain / localhost */
if ((disp->unixdomain || localhost)
&& ourhostname && !strcmp(ourhostname, str[0]))
/* A matching Unix-domain socket is always the best
* match. */
match = ideal_match = TRUE;
break;
}
if (match) {
/* Current best guess -- may be overridden if !ideal_match */
disp->localauthproto = protocol;
sfree(disp->localauthdata); /* free previous guess, if any */
disp->localauthdata = snewn(len[3], unsigned char);
memcpy(disp->localauthdata, str[3], len[3]);
disp->localauthdatalen = len[3];
}
}
done:
fclose(authfp);
smemclr(buf, 65537 * 4);
sfree(buf);
sfree(ourhostname);
}
static void x11_log(Plug p, int type, SockAddr addr, int port,
const char *error_msg, int error_code)
{
/* We have no interface to the logging module here, so we drop these. */
}
static int x11_closing(Plug plug, const char *error_msg, int error_code,
int calling_back)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
if (error_msg) {
/*
* Socket error. Slam the connection instantly shut.
*/
sshfwd_unclean_close(xconn->c, error_msg);
} else {
/*
* Ordinary EOF received on socket. Send an EOF on the SSH
* channel.
*/
if (xconn->c)
sshfwd_write_eof(xconn->c);
}
return 1;
}
static int x11_receive(Plug plug, int urgent, char *data, int len)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
if (sshfwd_write(xconn->c, data, len) > 0) {
xconn->throttled = 1;
sk_set_frozen(xconn->s, 1);
}
return 1;
}
static void x11_sent(Plug plug, int bufsize)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
sshfwd_unthrottle(xconn->c, bufsize);
}
/*
* When setting up X forwarding, we should send the screen number
* from the specified local display. This function extracts it from
* the display string.
*/
int x11_get_screen_number(char *display)
{
int n;
n = strcspn(display, ":");
if (!display[n])
return 0;
n = strcspn(display, ".");
if (!display[n])
return 0;
return atoi(display + n + 1);
}
/*
* Called to set up the raw connection.
*
* On success, returns NULL and fills in *xconnret. On error, returns
* a dynamically allocated error message string.
*/
extern char *x11_init(struct X11Connection **xconnret,
struct X11Display *disp, void *c,
const char *peeraddr, int peerport, Conf *conf)
{
static const struct plug_function_table fn_table = {
x11_log,
x11_closing,
x11_receive,
x11_sent,
NULL
};
const char *err;
struct X11Connection *xconn;
/*
* Open socket.
*/
xconn = *xconnret = snew(struct X11Connection);
xconn->fn = &fn_table;
xconn->auth_protocol = NULL;
xconn->disp = disp;
xconn->verified = 0;
xconn->data_read = 0;
xconn->throttled = xconn->throttle_override = 0;
xconn->c = c;
xconn->s = new_connection(sk_addr_dup(disp->addr),
disp->realhost, disp->port,
0, 1, 0, 0, (Plug) xconn, conf);
if ((err = sk_socket_error(xconn->s)) != NULL) {
char *err_ret = dupstr(err);
sk_close(xconn->s);
sfree(xconn);
*xconnret = NULL;
return err_ret;
}
/*
* See if we can make sense of the peer address we were given.
*/
{
int i[4];
if (peeraddr &&
4 == sscanf(peeraddr, "%d.%d.%d.%d", i+0, i+1, i+2, i+3)) {
xconn->peer_ip = (i[0] << 24) | (i[1] << 16) | (i[2] << 8) | i[3];
xconn->peer_port = peerport;
} else {
xconn->peer_ip = 0;
xconn->peer_port = -1;
}
}
return NULL;
}
void x11_close(struct X11Connection *xconn)
{
if (!xconn)
return;
if (xconn->auth_protocol) {
sfree(xconn->auth_protocol);
sfree(xconn->auth_data);
}
sk_close(xconn->s);
sfree(xconn);
}
void x11_unthrottle(struct X11Connection *xconn)
{
if (!xconn)
return;
xconn->throttled = 0;
sk_set_frozen(xconn->s, xconn->throttled || xconn->throttle_override);
}
void x11_override_throttle(struct X11Connection *xconn, int enable)
{
if (!xconn)
return;
xconn->throttle_override = enable;
sk_set_frozen(xconn->s, xconn->throttled || xconn->throttle_override);
}
/*
* Called to send data down the raw connection.
*/
int x11_send(struct X11Connection *xconn, char *data, int len)
{
if (!xconn)
return 0;
/*
* Read the first packet.
*/
while (len > 0 && xconn->data_read < 12)
xconn->firstpkt[xconn->data_read++] = (unsigned char) (len--, *data++);
if (xconn->data_read < 12)
return 0;
/*
* If we have not allocated the auth_protocol and auth_data
* strings, do so now.
*/
if (!xconn->auth_protocol) {
xconn->auth_plen = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 6);
xconn->auth_dlen = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 8);
xconn->auth_psize = (xconn->auth_plen + 3) & ~3;
xconn->auth_dsize = (xconn->auth_dlen + 3) & ~3;
/* Leave room for a terminating zero, to make our lives easier. */
xconn->auth_protocol = snewn(xconn->auth_psize + 1, char);
xconn->auth_data = snewn(xconn->auth_dsize, unsigned char);
}
/*
* Read the auth_protocol and auth_data strings.
*/
while (len > 0 &&
xconn->data_read < 12 + xconn->auth_psize)
xconn->auth_protocol[xconn->data_read++ - 12] = (len--, *data++);
while (len > 0 &&
xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
xconn->auth_data[xconn->data_read++ - 12 -
xconn->auth_psize] = (unsigned char) (len--, *data++);
if (xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
return 0;
/*
* If we haven't verified the authorisation, do so now.
*/
if (!xconn->verified) {
char *err;
xconn->auth_protocol[xconn->auth_plen] = '\0'; /* ASCIZ */
err = x11_verify(xconn->peer_ip, xconn->peer_port,
xconn->disp, xconn->auth_protocol,
xconn->auth_data, xconn->auth_dlen);
/*
* If authorisation failed, construct and send an error
* packet, then terminate the connection.
*/
if (err) {
char *message;
int msglen, msgsize;
unsigned char *reply;
message = dupprintf("%s X11 proxy: %s", appname, err);
msglen = strlen(message);
reply = snewn(8 + msglen+1 + 4, unsigned char); /* include zero */
msgsize = (msglen + 3) & ~3;
reply[0] = 0; /* failure */
reply[1] = msglen; /* length of reason string */
memcpy(reply + 2, xconn->firstpkt + 2, 4); /* major/minor proto vsn */
PUT_16BIT(xconn->firstpkt[0], reply + 6, msgsize >> 2);/* data len */
memset(reply + 8, 0, msgsize);
memcpy(reply + 8, message, msglen);
sshfwd_write(xconn->c, (char *)reply, 8 + msgsize);
sshfwd_write_eof(xconn->c);
sfree(reply);
sfree(message);
return 0;
}
/*
* Now we know we're going to accept the connection. Strip
* the fake auth data, and optionally put real auth data in
* instead.
*/
{
char realauthdata[64];
int realauthlen = 0;
int authstrlen = strlen(x11_authnames[xconn->disp->localauthproto]);
int buflen = 0; /* initialise to placate optimiser */
static const char zeroes[4] = { 0,0,0,0 };
void *buf;
if (xconn->disp->localauthproto == X11_MIT) {
assert(xconn->disp->localauthdatalen <= lenof(realauthdata));
realauthlen = xconn->disp->localauthdatalen;
memcpy(realauthdata, xconn->disp->localauthdata, realauthlen);
} else if (xconn->disp->localauthproto == X11_XDM &&
xconn->disp->localauthdatalen == 16 &&
((buf = sk_getxdmdata(xconn->s, &buflen))!=0)) {
time_t t;
realauthlen = (buflen+12+7) & ~7;
assert(realauthlen <= lenof(realauthdata));
memset(realauthdata, 0, realauthlen);
memcpy(realauthdata, xconn->disp->localauthdata, 8);
memcpy(realauthdata+8, buf, buflen);
t = time(NULL);
PUT_32BIT_MSB_FIRST(realauthdata+8+buflen, t);
des_encrypt_xdmauth(xconn->disp->localauthdata+9,
(unsigned char *)realauthdata,
realauthlen);
sfree(buf);
}
/* implement other auth methods here if required */
PUT_16BIT(xconn->firstpkt[0], xconn->firstpkt + 6, authstrlen);
PUT_16BIT(xconn->firstpkt[0], xconn->firstpkt + 8, realauthlen);
sk_write(xconn->s, (char *)xconn->firstpkt, 12);
if (authstrlen) {
sk_write(xconn->s, x11_authnames[xconn->disp->localauthproto],
authstrlen);
sk_write(xconn->s, zeroes, 3 & (-authstrlen));
}
if (realauthlen) {
sk_write(xconn->s, realauthdata, realauthlen);
sk_write(xconn->s, zeroes, 3 & (-realauthlen));
}
}
xconn->verified = 1;
}
/*
* After initialisation, just copy data simply.
*/
return sk_write(xconn->s, data, len);
}
void x11_send_eof(struct X11Connection *xconn)
{
sk_write_eof(xconn->s);
}