1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00
putty-source/ssh/connection2-client.c

512 lines
16 KiB
C
Raw Normal View History

Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/*
* Client-specific parts of the SSH-2 connection layer.
*/
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "bpp.h"
#include "ppl.h"
#include "channel.h"
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
#include "sshcr.h"
#include "connection2.h"
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
static ChanopenResult chan_open_x11(
struct ssh2_connection_state *s, SshChannel *sc,
ptrlen peeraddr, int peerport)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
char *peeraddr_str;
Channel *ch;
ppl_logevent("Received X11 connect request from %.*s:%d",
PTRLEN_PRINTF(peeraddr), peerport);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
if (!s->X11_fwd_enabled && !s->connshare) {
CHANOPEN_RETURN_FAILURE(
SSH2_OPEN_ADMINISTRATIVELY_PROHIBITED,
("X11 forwarding is not enabled"));
}
peeraddr_str = peeraddr.ptr ? mkstr(peeraddr) : NULL;
ch = x11_new_channel(
s->x11authtree, sc, peeraddr_str, peerport, s->connshare != NULL);
sfree(peeraddr_str);
ppl_logevent("Opened X11 forward channel");
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
CHANOPEN_RETURN_SUCCESS(ch);
}
static ChanopenResult chan_open_forwarded_tcpip(
struct ssh2_connection_state *s, SshChannel *sc,
ptrlen fwdaddr, int fwdport, ptrlen peeraddr, int peerport)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
struct ssh_rportfwd pf, *realpf;
Channel *ch;
char *err;
ppl_logevent("Received remote port %.*s:%d open request from %.*s:%d",
PTRLEN_PRINTF(fwdaddr), fwdport,
PTRLEN_PRINTF(peeraddr), peerport);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
pf.shost = mkstr(fwdaddr);
pf.sport = fwdport;
realpf = find234(s->rportfwds, &pf, NULL);
sfree(pf.shost);
if (realpf == NULL) {
CHANOPEN_RETURN_FAILURE(
SSH2_OPEN_ADMINISTRATIVELY_PROHIBITED,
("Remote port is not recognised"));
}
if (realpf->share_ctx) {
/*
* This port forwarding is on behalf of a connection-sharing
* downstream.
*/
CHANOPEN_RETURN_DOWNSTREAM(realpf->share_ctx);
}
err = portfwdmgr_connect(
s->portfwdmgr, &ch, realpf->dhost, realpf->dport,
sc, realpf->addressfamily);
ppl_logevent("Attempting to forward remote port to %s:%d",
realpf->dhost, realpf->dport);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
if (err != NULL) {
ppl_logevent("Port open failed: %s", err);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
sfree(err);
CHANOPEN_RETURN_FAILURE(
SSH2_OPEN_CONNECT_FAILED,
("Port open failed"));
}
ppl_logevent("Forwarded port opened successfully");
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
CHANOPEN_RETURN_SUCCESS(ch);
}
static ChanopenResult chan_open_auth_agent(
struct ssh2_connection_state *s, SshChannel *sc)
{
Relax criteria for accepting agent-forwarding channel-opens. Previously, the instant at which we send to the server a request to enable agent forwarding (the "auth-agent-req@openssh.com" channel request, or SSH1_CMSG_AGENT_REQUEST_FORWARDING) was also the instant at which we set a flag indicating that we're prepared to accept attempts from the server to open a channel to talk to the forwarded agent. If the server attempts that when we haven't sent a forwarding request, we treat it with suspicion, and reject it. But it turns out that at least one SSH server does this, for what seems to be a _somewhat_ sensible purpose, and OpenSSH accepts it. So, on the basis that the @openssh.com domain suffix makes them the arbiters of this part of the spec, I'm following their practice. I've removed the 'agent_fwd_enabled' flag from both connection layer implementations, together with the ConnectionLayer method that sets it; now agent-forwarding CHANNEL_OPENs are gated only on the questions of whether agent forwarding was permitted in the configuration and whether an agent actually exists to talk to, and not also whether we had previously sent a message to the server announcing it. (The change to this condition is also applied in the SSH-1 agent forwarding code, mostly for the sake of keeping things parallel where possible. I think it doesn't actually make a difference in SSH-1, because in SSH-1, it's not _possible_ for the server to try to open an agent channel before the main channel is set up, due to the entirely separate setup phase of the protocol.) The use case is a proxy host which makes a secondary SSH connection to a real destination host. A user has run into one of these recently, announcing a version banner of "SSH-2.0-FudoSSH", which relies on agent forwarding to authenticate the secondary connection. You connect to the proxy host and authenticate with a username string of the form "realusername#real.destination.host", and then, at the start of the connection protocol, the server immediately opens a channel back to your SSH agent which it uses to authenticate to the destination host. And it delays answering any CHANNEL_OPEN requests from the client until that's all done. For example (seen from the client's POV, although the server's CHANNEL_OPEN may well have been _sent_ up front rather than in response to the client's): client: SSH2_MSG_CHANNEL_OPEN "session" server: SSH2_MSG_CHANNEL_OPEN "auth-agent@openssh.com" client: SSH2_MSG_CHANNEL_OPEN_CONFIRMATION to the auth-agent request <- data is exchanged on the agent channel; proxy host uses that signature to log in to the destination host -> server: SSH2_MSG_CHANNEL_OPEN_CONFIRMATION to the session request With PuTTY, this wasn't working, because at the point when the server sends the auth-agent CHANNEL_OPEN, we had not yet had any opportunity to send auth-agent-req (because that has to wait until we've had a CHANNEL_OPEN_CONFIRMATION). So we were rejecting the server's CHANNEL_OPEN, which broke this workflow: client: SSH2_MSG_CHANNEL_OPEN "session" server: SSH2_MSG_CHANNEL_OPEN "auth-agent@openssh.com" client: SSH2_MSG_CHANNEL_OPEN_FAILURE to the auth-agent request (hey, I haven't told you you can do that yet!) server: SSH2_MSG_CHANNEL_OPEN_FAILURE to the session request (in that case, no shell session for you!)
2020-12-23 22:26:44 +00:00
if (!ssh_agent_forwarding_permitted(&s->cl)) {
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
CHANOPEN_RETURN_FAILURE(
SSH2_OPEN_ADMINISTRATIVELY_PROHIBITED,
("Agent forwarding is not enabled"));
}
Stream-oriented agent forwarding on Unix. Historically, because of the way Windows Pageant's IPC works, PuTTY's agent forwarding has always been message-oriented. The channel implementation in agentf.c deals with receiving a data stream from the remote agent client and breaking it up into messages, and then it passes each message individually to agent_query(). On Unix, this is more work than is really needed, and I've always meant to get round to doing the more obvious thing: making an agent forwarding channel into simply a stream-oriented proxy, passing raw data back and forth between the SSH channel and the local AF_UNIX socket without having to know or care about the message boundaries in the stream. The portfwdmgr_connect_socket() facility introduced by the previous commit is the missing piece of infrastructure to make that possible. Now, the agent client module provides an API that includes a callback you can pass to portfwdmgr_connect_socket() to open a streamed agent connection, and the agent forwarding setup function tries to use that where possible, only falling back to the message-based agentf.c system if it can't be done. On Windows, the new piece of agent-client API returns failure, so we still fall back to agentf.c there. There are two benefits to doing it this way. One is that it's just simpler and more robust: if PuTTY isn't trying to parse the agent connection, then it has less work to do and fewer places to introduce bugs. The other is that it's futureproof against changes in the agent protocol: if any kind of extension is ever introduced that requires keeping state within a single agent connection, or that changes the protocol itself so that agentf's message-boundary detection stops working, then this forwarding system will still work.
2020-01-01 16:46:44 +00:00
/*
* If possible, make a stream-oriented connection to the agent and
* set up an ordinary port-forwarding type channel over it.
*/
Merge the two low-level portfwd setup systems. In commit 09954a87c I introduced the portfwdmgr_connect_socket() system, which opened a port forwarding given a callback to create the Socket itself, with the aim of using it to make forwardings to Unix- domain sockets and Windows named pipes (both initially for agent forwarding). But I forgot that a year and a bit ago, in commit 834396170, I already introduced a similar low-level system for creating a PortForwarding around an unusual kind of socket: the portfwd_raw_new() system, which in place of a callback uses a two-phase setup protocol (you create the socket in between the two setup calls, and can roll it back if the socket can't be created). There's really no need to have _both_ these systems! So now I'm merging them, which is to say, I'm enhancing portfwd_raw_new to have the one new feature it needs, and throwing away the newer system completely. The new feature is to be able to control the initial state of the 'ready' flag: portfwd_raw_new was always used for initiating port forwardings in response to an incoming local connection, which means you need to start off with ready=false and set it true when the other end of the SSH connection sends back OPEN_CONFIRMATION. Now it's being used for initiating port forwardings in response to a CHANNEL_OPEN, we need to be able to start with ready=true. This commit reverts 09954a87c24e84dac133a9c29ffaef45f145eeca and its followup fix 12aa06ccc98cf8a912eb2ea54f02d234f2f8c173, and simplifies the agent_connect system down to a single trivial function that makes a Socket given a Plug.
2020-01-27 19:34:15 +00:00
Plug *plug;
Channel *ch = portfwd_raw_new(&s->cl, &plug, true);
Socket *skt = agent_connect(plug);
Stream-oriented agent forwarding on Unix. Historically, because of the way Windows Pageant's IPC works, PuTTY's agent forwarding has always been message-oriented. The channel implementation in agentf.c deals with receiving a data stream from the remote agent client and breaking it up into messages, and then it passes each message individually to agent_query(). On Unix, this is more work than is really needed, and I've always meant to get round to doing the more obvious thing: making an agent forwarding channel into simply a stream-oriented proxy, passing raw data back and forth between the SSH channel and the local AF_UNIX socket without having to know or care about the message boundaries in the stream. The portfwdmgr_connect_socket() facility introduced by the previous commit is the missing piece of infrastructure to make that possible. Now, the agent client module provides an API that includes a callback you can pass to portfwdmgr_connect_socket() to open a streamed agent connection, and the agent forwarding setup function tries to use that where possible, only falling back to the message-based agentf.c system if it can't be done. On Windows, the new piece of agent-client API returns failure, so we still fall back to agentf.c there. There are two benefits to doing it this way. One is that it's just simpler and more robust: if PuTTY isn't trying to parse the agent connection, then it has less work to do and fewer places to introduce bugs. The other is that it's futureproof against changes in the agent protocol: if any kind of extension is ever introduced that requires keeping state within a single agent connection, or that changes the protocol itself so that agentf's message-boundary detection stops working, then this forwarding system will still work.
2020-01-01 16:46:44 +00:00
Merge the two low-level portfwd setup systems. In commit 09954a87c I introduced the portfwdmgr_connect_socket() system, which opened a port forwarding given a callback to create the Socket itself, with the aim of using it to make forwardings to Unix- domain sockets and Windows named pipes (both initially for agent forwarding). But I forgot that a year and a bit ago, in commit 834396170, I already introduced a similar low-level system for creating a PortForwarding around an unusual kind of socket: the portfwd_raw_new() system, which in place of a callback uses a two-phase setup protocol (you create the socket in between the two setup calls, and can roll it back if the socket can't be created). There's really no need to have _both_ these systems! So now I'm merging them, which is to say, I'm enhancing portfwd_raw_new to have the one new feature it needs, and throwing away the newer system completely. The new feature is to be able to control the initial state of the 'ready' flag: portfwd_raw_new was always used for initiating port forwardings in response to an incoming local connection, which means you need to start off with ready=false and set it true when the other end of the SSH connection sends back OPEN_CONFIRMATION. Now it's being used for initiating port forwardings in response to a CHANNEL_OPEN, we need to be able to start with ready=true. This commit reverts 09954a87c24e84dac133a9c29ffaef45f145eeca and its followup fix 12aa06ccc98cf8a912eb2ea54f02d234f2f8c173, and simplifies the agent_connect system down to a single trivial function that makes a Socket given a Plug.
2020-01-27 19:34:15 +00:00
if (!sk_socket_error(skt)) {
portfwd_raw_setup(ch, skt, sc);
CHANOPEN_RETURN_SUCCESS(ch);
} else {
portfwd_raw_free(ch);
/*
* Otherwise, fall back to the old-fashioned system of parsing the
* forwarded data stream ourselves for message boundaries, and
* passing each individual message to the one-off agent_query().
*/
CHANOPEN_RETURN_SUCCESS(agentf_new(sc));
}
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
ChanopenResult ssh2_connection_parse_channel_open(
struct ssh2_connection_state *s, ptrlen type,
PktIn *pktin, SshChannel *sc)
{
if (ptrlen_eq_string(type, "x11")) {
ptrlen peeraddr = get_string(pktin);
int peerport = get_uint32(pktin);
return chan_open_x11(s, sc, peeraddr, peerport);
} else if (ptrlen_eq_string(type, "forwarded-tcpip")) {
ptrlen fwdaddr = get_string(pktin);
int fwdport = toint(get_uint32(pktin));
ptrlen peeraddr = get_string(pktin);
int peerport = toint(get_uint32(pktin));
return chan_open_forwarded_tcpip(
s, sc, fwdaddr, fwdport, peeraddr, peerport);
} else if (ptrlen_eq_string(type, "auth-agent@openssh.com")) {
return chan_open_auth_agent(s, sc);
} else {
CHANOPEN_RETURN_FAILURE(
SSH2_OPEN_UNKNOWN_CHANNEL_TYPE,
("Unsupported channel type requested"));
}
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh2_connection_parse_global_request(
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
struct ssh2_connection_state *s, ptrlen type, PktIn *pktin)
{
/*
* We don't know of any global requests that an SSH client needs
* to honour.
*/
return false;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
PktOut *ssh2_portfwd_chanopen(
struct ssh2_connection_state *s, struct ssh2_channel *c,
const char *hostname, int port,
const char *description, const SocketPeerInfo *peerinfo)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
PktOut *pktout;
/*
* In client mode, this function is called by portfwdmgr in
* response to PortListeners that were set up in
* portfwdmgr_config, which means that the hostname and port
* parameters will indicate the host we want to tell the server to
* connect _to_.
*/
ppl_logevent("Opening connection to %s:%d for %s",
hostname, port, description);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
pktout = ssh2_chanopen_init(c, "direct-tcpip");
{
char *trimmed_host = host_strduptrim(hostname);
put_stringz(pktout, trimmed_host);
sfree(trimmed_host);
}
put_uint32(pktout, port);
/*
* We make up values for the originator data; partly it's too much
* hassle to keep track, and partly I'm not convinced the server
* should be told details like that about my local network
* configuration. The "originator IP address" is syntactically a
* numeric IP address, and some servers (e.g., Tectia) get upset
* if it doesn't match this syntax.
*/
put_stringz(pktout, "0.0.0.0");
put_uint32(pktout, 0);
return pktout;
}
static int ssh2_rportfwd_cmp(void *av, void *bv)
{
struct ssh_rportfwd *a = (struct ssh_rportfwd *) av;
struct ssh_rportfwd *b = (struct ssh_rportfwd *) bv;
int i;
if ( (i = strcmp(a->shost, b->shost)) != 0)
return i < 0 ? -1 : +1;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
if (a->sport > b->sport)
return +1;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
if (a->sport < b->sport)
return -1;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
return 0;
}
static void ssh2_rportfwd_globreq_response(struct ssh2_connection_state *s,
PktIn *pktin, void *ctx)
{
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
struct ssh_rportfwd *rpf = (struct ssh_rportfwd *)ctx;
if (pktin->type == SSH2_MSG_REQUEST_SUCCESS) {
ppl_logevent("Remote port forwarding from %s enabled",
rpf->log_description);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
} else {
ppl_logevent("Remote port forwarding from %s refused",
rpf->log_description);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
struct ssh_rportfwd *realpf = del234(s->rportfwds, rpf);
assert(realpf == rpf);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
portfwdmgr_close(s->portfwdmgr, rpf->pfr);
free_rportfwd(rpf);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
}
struct ssh_rportfwd *ssh2_rportfwd_alloc(
ConnectionLayer *cl,
const char *shost, int sport, const char *dhost, int dport,
int addressfamily, const char *log_description, PortFwdRecord *pfr,
ssh_sharing_connstate *share_ctx)
{
struct ssh2_connection_state *s =
container_of(cl, struct ssh2_connection_state, cl);
struct ssh_rportfwd *rpf = snew(struct ssh_rportfwd);
if (!s->rportfwds)
s->rportfwds = newtree234(ssh2_rportfwd_cmp);
rpf->shost = dupstr(shost);
rpf->sport = sport;
rpf->dhost = dupstr(dhost);
rpf->dport = dport;
rpf->addressfamily = addressfamily;
rpf->log_description = dupstr(log_description);
rpf->pfr = pfr;
rpf->share_ctx = share_ctx;
if (add234(s->rportfwds, rpf) != rpf) {
free_rportfwd(rpf);
return NULL;
}
if (!rpf->share_ctx) {
PktOut *pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH2_MSG_GLOBAL_REQUEST);
put_stringz(pktout, "tcpip-forward");
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
put_bool(pktout, true); /* want reply */
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
put_stringz(pktout, rpf->shost);
put_uint32(pktout, rpf->sport);
pq_push(s->ppl.out_pq, pktout);
ssh2_queue_global_request_handler(
s, ssh2_rportfwd_globreq_response, rpf);
}
return rpf;
}
void ssh2_rportfwd_remove(ConnectionLayer *cl, struct ssh_rportfwd *rpf)
{
struct ssh2_connection_state *s =
container_of(cl, struct ssh2_connection_state, cl);
if (rpf->share_ctx) {
/*
* We don't manufacture a cancel-tcpip-forward message for
* remote port forwardings being removed on behalf of a
* downstream; we just pass through the one the downstream
* sent to us.
*/
} else {
PktOut *pktout = ssh_bpp_new_pktout(
s->ppl.bpp, SSH2_MSG_GLOBAL_REQUEST);
put_stringz(pktout, "cancel-tcpip-forward");
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
put_bool(pktout, false); /* _don't_ want reply */
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
put_stringz(pktout, rpf->shost);
put_uint32(pktout, rpf->sport);
pq_push(s->ppl.out_pq, pktout);
}
assert(s->rportfwds);
struct ssh_rportfwd *realpf = del234(s->rportfwds, rpf);
assert(realpf == rpf);
free_rportfwd(rpf);
}
SshChannel *ssh2_session_open(ConnectionLayer *cl, Channel *chan)
{
struct ssh2_connection_state *s =
container_of(cl, struct ssh2_connection_state, cl);
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
struct ssh2_channel *c = snew(struct ssh2_channel);
PktOut *pktout;
c->connlayer = s;
ssh2_channel_init(c);
c->halfopen = true;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
c->chan = chan;
ppl_logevent("Opening main session channel");
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
pktout = ssh2_chanopen_init(c, "session");
pq_push(s->ppl.out_pq, pktout);
return &c->sc;
}
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
SshChannel *ssh2_serverside_x11_open(
ConnectionLayer *cl, Channel *chan, const SocketPeerInfo *pi)
{
unreachable("Should never be called in the client");
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
}
SshChannel *ssh2_serverside_agent_open(ConnectionLayer *cl, Channel *chan)
{
unreachable("Should never be called in the client");
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
}
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
static void ssh2_channel_response(
struct ssh2_channel *c, PktIn *pkt, void *ctx)
{
/* If pkt==NULL (because this handler has been called in response
* to CHANNEL_CLOSE arriving while the request was still
* outstanding), we treat that the same as CHANNEL_FAILURE. */
chan_request_response(c->chan,
pkt && pkt->type == SSH2_MSG_CHANNEL_SUCCESS);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
void ssh2channel_start_shell(SshChannel *sc, bool want_reply)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "shell", want_reply ? ssh2_channel_response : NULL, NULL);
pq_push(s->ppl.out_pq, pktout);
}
void ssh2channel_start_command(
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
SshChannel *sc, bool want_reply, const char *command)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "exec", want_reply ? ssh2_channel_response : NULL, NULL);
put_stringz(pktout, command);
pq_push(s->ppl.out_pq, pktout);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh2channel_start_subsystem(
SshChannel *sc, bool want_reply, const char *subsystem)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "subsystem", want_reply ? ssh2_channel_response : NULL, NULL);
put_stringz(pktout, subsystem);
pq_push(s->ppl.out_pq, pktout);
return true;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
void ssh2channel_send_exit_status(SshChannel *sc, int status)
{
unreachable("Should never be called in the client");
}
void ssh2channel_send_exit_signal(
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
SshChannel *sc, ptrlen signame, bool core_dumped, ptrlen msg)
{
unreachable("Should never be called in the client");
}
void ssh2channel_send_exit_signal_numeric(
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
SshChannel *sc, int signum, bool core_dumped, ptrlen msg)
{
unreachable("Should never be called in the client");
}
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
void ssh2channel_request_x11_forwarding(
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
SshChannel *sc, bool want_reply, const char *authproto,
const char *authdata, int screen_number, bool oneshot)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "x11-req", want_reply ? ssh2_channel_response : NULL, NULL);
put_bool(pktout, oneshot);
put_stringz(pktout, authproto);
put_stringz(pktout, authdata);
put_uint32(pktout, screen_number);
pq_push(s->ppl.out_pq, pktout);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
void ssh2channel_request_agent_forwarding(SshChannel *sc, bool want_reply)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "auth-agent-req@openssh.com",
want_reply ? ssh2_channel_response : NULL, NULL);
pq_push(s->ppl.out_pq, pktout);
}
void ssh2channel_request_pty(
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
SshChannel *sc, bool want_reply, Conf *conf, int w, int h)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
strbuf *modebuf;
PktOut *pktout = ssh2_chanreq_init(
c, "pty-req", want_reply ? ssh2_channel_response : NULL, NULL);
put_stringz(pktout, conf_get_str(conf, CONF_termtype));
put_uint32(pktout, w);
put_uint32(pktout, h);
put_uint32(pktout, 0); /* pixel width */
put_uint32(pktout, 0); /* pixel height */
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
modebuf = strbuf_new();
write_ttymodes_to_packet(
BinarySink_UPCAST(modebuf), 2,
get_ttymodes_from_conf(s->ppl.seat, conf));
put_stringsb(pktout, modebuf);
pq_push(s->ppl.out_pq, pktout);
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh2channel_send_env_var(
SshChannel *sc, bool want_reply, const char *var, const char *value)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "env", want_reply ? ssh2_channel_response : NULL, NULL);
put_stringz(pktout, var);
put_stringz(pktout, value);
pq_push(s->ppl.out_pq, pktout);
return true;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh2channel_send_serial_break(SshChannel *sc, bool want_reply, int length)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "break", want_reply ? ssh2_channel_response : NULL, NULL);
put_uint32(pktout, length);
pq_push(s->ppl.out_pq, pktout);
return true;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh2channel_send_signal(
SshChannel *sc, bool want_reply, const char *signame)
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(
c, "signal", want_reply ? ssh2_channel_response : NULL, NULL);
put_stringz(pktout, signame);
pq_push(s->ppl.out_pq, pktout);
return true;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
}
void ssh2channel_send_terminal_size_change(SshChannel *sc, int w, int h)
{
struct ssh2_channel *c = container_of(sc, struct ssh2_channel, sc);
struct ssh2_connection_state *s = c->connlayer;
PktOut *pktout = ssh2_chanreq_init(c, "window-change", NULL, NULL);
put_uint32(pktout, w);
put_uint32(pktout, h);
put_uint32(pktout, 0); /* pixel width */
put_uint32(pktout, 0); /* pixel height */
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
pq_push(s->ppl.out_pq, pktout);
}
bool ssh2_connection_need_antispoof_prompt(struct ssh2_connection_state *s)
{
seat_set_trust_status(s->ppl.seat, false);
New Seat query, has_mixed_input_stream(). (TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
if (!seat_has_mixed_input_stream(s->ppl.seat))
return false;
if (seat_can_set_trust_status(s->ppl.seat))
return false;
if (ssh_is_bare(s->ppl.ssh))
return false;
return true;
}