1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/unix/CMakeLists.txt

247 lines
7.2 KiB
CMake
Raw Normal View History

Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR})
add_sources_from_current_dir(utils
utils/arm_arch_queries.c
utils/block_signal.c
utils/cloexec.c
utils/dputs.c
utils/filename.c
utils/fontspec.c
utils/getticks.c
utils/get_username.c
utils/keysym_to_unicode.c
utils/make_dir_and_check_ours.c
utils/make_dir_path.c
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
utils/make_spr_sw_abort_errno.c
utils/nonblock.c
utils/open_for_write_would_lose_data.c
utils/pgp_fingerprints.c
utils/pollwrap.c
utils/signal.c
utils/x11_ignore_error.c
# We want the ISO C implementation of ltime(), because we don't have
# a local better alternative
../utils/ltime.c)
# Compiled icon pixmap files
add_library(puttyxpms STATIC
putty-xpm.c
putty-config-xpm.c)
add_library(ptermxpms STATIC
pterm-xpm.c
pterm-config-xpm.c)
add_sources_from_current_dir(eventloop
cliloop.c uxsel.c)
add_sources_from_current_dir(console
console.c)
add_sources_from_current_dir(settings
storage.c)
add_sources_from_current_dir(network
network.c fd-socket.c agent-socket.c peerinfo.c local-proxy.c x11.c)
add_sources_from_current_dir(sshcommon
noise.c)
add_sources_from_current_dir(sshclient
gss.c agent-client.c sharing.c)
add_sources_from_current_dir(sshserver
sftpserver.c procnet.c)
add_sources_from_current_dir(sftpclient
sftp.c)
add_sources_from_current_dir(otherbackends
serial.c)
add_sources_from_current_dir(agent
agent-client.c)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(fuzzterm
${CMAKE_SOURCE_DIR}/test/fuzzterm.c
${CMAKE_SOURCE_DIR}/stubs/no-print.c
unicode.c
no-gtk.c
$<TARGET_OBJECTS:logging>)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(fuzzterm FuZZterm)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_dependencies(fuzzterm generated_licence_h)
target_link_libraries(fuzzterm
guiterminal eventloop charset settings utils)
add_executable(osxlaunch
osxlaunch.c)
add_sources_from_current_dir(plink no-gtk.c)
add_sources_from_current_dir(pscp no-gtk.c)
add_sources_from_current_dir(psftp no-gtk.c)
add_sources_from_current_dir(psocks no-gtk.c)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(psusan
psusan.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/ssh/scpserver.c
no-gtk.c
pty.c)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(psusan psusan)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(psusan
eventloop sshserver keygen settings network crypto utils)
installed_program(psusan)
add_library(puttygen-common OBJECT
${CMAKE_SOURCE_DIR}/stubs/no-timing.c
keygen-noise.c
no-gtk.c
noise.c
storage.c
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
${CMAKE_SOURCE_DIR}/sshpubk.c
${CMAKE_SOURCE_DIR}/sshrand.c)
add_executable(puttygen
${CMAKE_SOURCE_DIR}/cmdgen.c
$<TARGET_OBJECTS:puttygen-common>)
target_link_libraries(puttygen keygen console crypto utils)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
installed_program(puttygen)
add_executable(cgtest
${CMAKE_SOURCE_DIR}/cgtest.c
$<TARGET_OBJECTS:puttygen-common>)
target_link_libraries(cgtest keygen console crypto utils)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(testsc
${CMAKE_SOURCE_DIR}/test/testsc.c)
testsc: add side-channel test of probabilistic prime gen. Now that I've removed side-channel leakage from both prime candidate generation (via mp_unsafe_mod_integer) and Miller-Rabin, the probabilistic prime generation system in this code base is now able to get through testsc without it detecting any source of cache or timing side channels. So you should be able to generate an RSA key (in which the primes themselves must be secret) in a more hostile environment than you could previously be confident of. This is a bit counterintuitive, because _obviously_ random prime generation takes a variable amount of time, because it has to keep retrying until an attempt succeeds! But that's OK as long as the attempts are completely independent, because then any timing or cache information leaked by a _failed_ attempt will only tell an attacker about the numbers used in the failed attempt, and those numbers have been thrown away, so it doesn't matter who knows them. It's only important that the _successful_ attempt, from generating the random candidate through to completing its verification as (probably) prime, should be side-channel clean, because that's the attempt whose data is actually going to be turned into a private key that needs to be kept secret. (In particular, this means you have to avoid the old-fashioned strategy of generating successive prime candidates by incrementing a starting value until you find something not divisible by any small prime, because the number of iterations of that method would be a timing leak. Happily, we stopped doing that last year, in commit 08a3547bc54051e: now every candidate integer is generated independently, and if one fails the initial checks, we throw it away and start completely from scratch with a fresh random value.) So the test harness works by repeatedly running the prime generator in one-shot mode until an attempt succeeds, and then resetting the random-number stream to where it was just before the successful attempt. Then we generate the same prime number again, this time with the sclog mechanism turned on - and then, we compare it against the version we previously generated with the same random numbers, to make sure they're the same. This checks that the attempts really _are_ independent, in the sense that the prime generator is a pure function of its random input stream, and doesn't depend on state left over from previous attempts.
2021-08-27 16:46:25 +00:00
target_link_libraries(testsc keygen crypto utils)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(testzlib
${CMAKE_SOURCE_DIR}/test/testzlib.c
${CMAKE_SOURCE_DIR}/ssh/zlib.c)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(testzlib utils)
add_executable(uppity
uppity.c
${CMAKE_SOURCE_DIR}/ssh/scpserver.c
no-gtk.c
pty.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(uppity Uppity)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(uppity
eventloop sshserver keygen settings network crypto utils)
if(GTK_FOUND)
add_sources_from_current_dir(utils
utils/align_label_left.c
utils/buildinfo_gtk_version.c
utils/get_label_text_dimensions.c
utils/get_x11_display.c
utils/our_dialog.c
utils/string_width.c
columns.c)
add_sources_from_current_dir(guiterminal
window.c unifont.c dialog.c config-gtk.c gtk-common.c config-unix.c unicode.c printing.c)
add_dependencies(guiterminal generated_licence_h) # dialog.c uses licence.h
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(pterm
pterm.c
main-gtk-simple.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/stubs/no-ca-config.c
${CMAKE_SOURCE_DIR}/stubs/no-console.c
${CMAKE_SOURCE_DIR}/proxy/nosshproxy.c
pty.c)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(pterm pterm)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(pterm
guiterminal eventloop settings charset utils ptermxpms
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
${GTK_LIBRARIES} ${X11_LIBRARIES})
installed_program(pterm)
if(GTK_VERSION GREATER_EQUAL 3)
add_executable(ptermapp
pterm.c
main-gtk-application.c
${CMAKE_SOURCE_DIR}/stubs/no-cmdline.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/stubs/no-ca-config.c
${CMAKE_SOURCE_DIR}/stubs/no-console.c
${CMAKE_SOURCE_DIR}/proxy/nosshproxy.c
pty.c)
be_list(ptermapp pterm)
target_link_libraries(ptermapp
guiterminal eventloop settings charset utils ptermxpms
${GTK_LIBRARIES} ${X11_LIBRARIES})
endif()
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(putty
putty.c
main-gtk-simple.c
${CMAKE_SOURCE_DIR}/stubs/no-console.c)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(putty PuTTY SSH SERIAL OTHERBACKENDS)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(putty
guiterminal eventloop sshclient otherbackends settings
network crypto charset utils puttyxpms
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
${GTK_LIBRARIES} ${X11_LIBRARIES})
set_target_properties(putty
PROPERTIES LINK_INTERFACE_MULTIPLICITY 2)
installed_program(putty)
if(GTK_VERSION GREATER_EQUAL 3)
add_executable(puttyapp
putty.c
main-gtk-application.c
${CMAKE_SOURCE_DIR}/stubs/no-cmdline.c
${CMAKE_SOURCE_DIR}/stubs/no-console.c)
be_list(puttyapp PuTTY SSH SERIAL OTHERBACKENDS)
target_link_libraries(puttyapp
guiterminal eventloop sshclient otherbackends settings
network crypto charset utils puttyxpms
${GTK_LIBRARIES} ${X11_LIBRARIES})
endif()
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
add_executable(puttytel
putty.c
main-gtk-simple.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/stubs/no-ca-config.c
${CMAKE_SOURCE_DIR}/stubs/no-console.c
${CMAKE_SOURCE_DIR}/stubs/no-rand.c
${CMAKE_SOURCE_DIR}/proxy/nocproxy.c
${CMAKE_SOURCE_DIR}/proxy/nosshproxy.c)
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
be_list(puttytel PuTTYtel SERIAL OTHERBACKENDS)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_link_libraries(puttytel
guiterminal eventloop otherbackends settings network charset utils
puttyxpms
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
${GTK_LIBRARIES} ${X11_LIBRARIES})
endif()
# Pageant is built whether we have GTK or not; in its absence we
# degrade to a version that doesn't provide the GTK askpass.
if(GTK_FOUND)
set(pageant_conditional_sources askpass.c)
set(pageant_libs ${GTK_LIBRARIES})
else()
set(pageant_conditional_sources noaskpass.c no-gtk.c)
set(pageant_libs)
endif()
add_executable(pageant
pageant.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
x11.c
noise.c
${CMAKE_SOURCE_DIR}/ssh/x11fwd.c
${CMAKE_SOURCE_DIR}/proxy/nosshproxy.c
${pageant_conditional_sources})
be_list(pageant Pageant)
target_link_libraries(pageant
eventloop console agent settings network crypto utils
${pageant_libs})
installed_program(pageant)
add_executable(test_lineedit
${CMAKE_SOURCE_DIR}/test/test_lineedit.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/stubs/no-logging.c
${CMAKE_SOURCE_DIR}/stubs/no-printing.c
${CMAKE_SOURCE_DIR}/stubs/no-storage.c
${CMAKE_SOURCE_DIR}/stubs/no-timing.c)
target_link_libraries(test_lineedit
guiterminal settings eventloop charset utils ${platform_libraries})
add_executable(test_terminal
${CMAKE_SOURCE_DIR}/test/test_terminal.c
${CMAKE_SOURCE_DIR}/stubs/no-gss.c
${CMAKE_SOURCE_DIR}/stubs/no-storage.c
${CMAKE_SOURCE_DIR}/stubs/no-timing.c)
target_link_libraries(test_terminal
guiterminal settings eventloop charset utils ${platform_libraries})