1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/ssh/connection1.h

125 lines
4.1 KiB
C
Raw Normal View History

Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
struct ssh1_channel;
struct outstanding_succfail;
struct ssh1_connection_state {
int crState;
Conf *conf;
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
int local_protoflags, remote_protoflags;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
tree234 *channels; /* indexed by local id */
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/* In SSH-1, the main session doesn't take the form of a 'channel'
* according to the wire protocol. But we want to use the same API
* for it, so we define an SshChannel here - but one that uses a
* separate vtable from the usual one, so it doesn't map to a
* struct ssh1_channel as all the others do. */
SshChannel mainchan_sc;
Channel *mainchan_chan; /* the other end of mainchan_sc */
mainchan *mainchan; /* and its subtype */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool got_pty;
bool ldisc_opts[LD_N_OPTIONS];
bool stdout_throttling;
bool want_user_input;
bool session_terminated;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
int term_width, term_height, term_width_orig, term_height_orig;
bufchain *user_input;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool X11_fwd_enabled;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
struct X11Display *x11disp;
struct X11FakeAuth *x11auth;
tree234 *x11authtree;
tree234 *rportfwds;
PortFwdManager *portfwdmgr;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool portfwdmgr_configured;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool finished_setup;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/*
* These store the list of requests that we're waiting for
* SSH_SMSG_{SUCCESS,FAILURE} replies to. (Those messages don't
* come with any indication of what they're in response to, so we
* have to keep track of the queue ourselves.)
*/
struct outstanding_succfail *succfail_head, *succfail_tail;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool compressing; /* used in server mode only */
bool sent_exit_status; /* also for server mode */
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
prompts_t *antispoof_prompt;
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
SeatPromptResult antispoof_ret;
const SshServerConfig *ssc;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
ConnectionLayer cl;
PacketProtocolLayer ppl;
};
struct ssh1_channel {
struct ssh1_connection_state *connlayer;
unsigned remoteid, localid;
int type;
/* True if we opened this channel but server hasn't confirmed. */
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool halfopen;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/* Bitmap of whether we've sent/received CHANNEL_CLOSE and
* CHANNEL_CLOSE_CONFIRMATION. */
#define CLOSES_SENT_CLOSE 1
#define CLOSES_SENT_CLOSECONF 2
#define CLOSES_RCVD_CLOSE 4
#define CLOSES_RCVD_CLOSECONF 8
int closes;
/*
* This flag indicates that an EOF is pending on the outgoing side
* of the channel: that is, wherever we're getting the data for
* this channel has sent us some data followed by EOF. We can't
* actually send the EOF until we've finished sending the data, so
* we set this flag instead to remind us to do so once our buffer
* is clear.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool pending_eof;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/*
* True if this channel is causing the underlying connection to be
* throttled.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool throttling_conn;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
/*
* True if we currently have backed-up data on the direction of
* this channel pointing out of the SSH connection, and therefore
* would prefer the 'Channel' implementation not to read further
* local input if possible.
*/
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool throttled_by_backlog;
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
Channel *chan; /* handle the client side of this channel, if not */
SshChannel sc; /* entry point for chan to talk back to */
};
SshChannel *ssh1_session_open(ConnectionLayer *cl, Channel *chan);
void ssh1_channel_init(struct ssh1_channel *c);
void ssh1_channel_free(struct ssh1_channel *c);
struct ssh_rportfwd *ssh1_rportfwd_alloc(
ConnectionLayer *cl,
const char *shost, int sport, const char *dhost, int dport,
int addressfamily, const char *log_description, PortFwdRecord *pfr,
ssh_sharing_connstate *share_ctx);
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
SshChannel *ssh1_serverside_x11_open(
ConnectionLayer *cl, Channel *chan, const SocketEndpointInfo *pi);
Add an actual SSH server program. This server is NOT SECURE! If anyone is reading this commit message, DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to speak the server end of everything PuTTY speaks on the client side, so that I can test that I haven't broken PuTTY when I reorganise its code, even things like RSA key exchange or chained auth methods which it's hard to find a server that speaks at all. (For this reason, it's declared with [UT] in the Recipe file, so that it falls into the same category as programs like testbn, which won't be installed by 'make install'.) Working title is 'Uppity', partly for 'Universal PuTTY Protocol Interaction Test Yoke', but mostly because it looks quite like the word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a very rarely used term meaning something not altogether unlike 'test harness', which is a bit of a stretch, but it'll do.) It doesn't actually _support_ everything I want yet. At the moment, it's a proof of concept only. But it has most of the machinery present, and the parts it's missing - such as chained auth methods - should be easy enough to add because I've built in the required flexibility, in the form of an AuthPolicy object which can request them if it wants to. However, the current AuthPolicy object is entirely trivial, and will let in any user with the password "weasel". (Another way in which this is not a production-ready server is that it also has no interaction with the OS's authentication system. In particular, it will not only let in any user with the same password, but it won't even change uid - it will open shells and forwardings under whatever user id you started it up as.) Currently, the program can only speak the SSH protocol on its standard I/O channels (using the new FdSocket facility), so if you want it to listen on a network port, you'll have to run it from some kind of separate listening program similar to inetd. For my own tests, I'm not even doing that: I'm just having PuTTY spawn it as a local proxy process, which also conveniently eliminates the risk of anyone hostile connecting to it. The bulk of the actual code reorganisation is already done by previous commits, so this change is _mostly_ just dropping in a new set of server-specific source files alongside the client-specific ones I created recently. The remaining changes in the shared SSH code are numerous, but all minor: - a few extra parameters to BPP and PPL constructors (e.g. 'are you in server mode?'), and pass both sets of SSH-1 protocol flags from the login to the connection layer - in server mode, unconditionally send our version string _before_ waiting for the remote one - a new hook in the SSH-1 BPP to handle enabling compression in server mode, where the message exchange works the other way round - new code in the SSH-2 BPP to do _deferred_ compression the other way round (the non-deferred version is still nicely symmetric) - in the SSH-2 transport layer, some adjustments to do key derivation either way round (swapping round the identifying letters in the various hash preimages, and making sure to list the KEXINITs in the right order) - also in the SSH-2 transport layer, an if statement that controls whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or vice versa - new ConnectionLayer methods for opening outgoing channels for X and agent forwardings - new functions in portfwd.c to establish listening sockets suitable for remote-to-local port forwarding (i.e. not under the direction of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
SshChannel *ssh1_serverside_agent_open(ConnectionLayer *cl, Channel *chan);
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
void ssh1_connection_direction_specific_setup(
struct ssh1_connection_state *s);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh1_handle_direction_specific_packet(
Move client-specific SSH code into new files. This is a major code reorganisation in preparation for making this code base into one that can build an SSH server as well as a client. (Mostly for purposes of using the server as a regression test suite for the client, though I have some other possible uses in mind too. However, it's currently no part of my plan to harden the server to the point where it can sensibly be deployed in a hostile environment.) In this preparatory commit, I've broken up the SSH-2 transport and connection layers, and the SSH-1 connection layer, into multiple source files, with each layer having its own header file containing the shared type definitions. In each case, the new source file contains code that's specific to the client side of the protocol, so that a new file can be swapped in in its place when building the server. Mostly this is just a straightforward moving of code without changing it very much, but there are a couple of actual changes in the process: The parsing of SSH-2 global-request and channel open-messages is now done by a new pair of functions in the client module. For channel opens, I've invented a new union data type to be the return value from that function, representing either failure (plus error message), success (plus Channel instance to manage the new channel), or an instruction to hand the channel over to a sharing downstream (plus a pointer to the downstream in question). Also, the tree234 of remote port forwardings in ssh2connection is now initialised on first use by the client-specific code, so that's where its compare function lives. The shared ssh2connection_free() still takes responsibility for freeing it, but now has to check if it's non-null first. The outer shell of the ssh2_lportfwd_open method, for making a local-to-remote port forwarding, is still centralised in ssh2connection.c, but the part of it that actually constructs the outgoing channel-open message has moved into the client code, because that will have to change depending on whether the channel-open has to have type direct-tcpip or forwarded-tcpip. In the SSH-1 connection layer, half the filter_queue method has moved out into the new client-specific code, but not all of it - bidirectional channel maintenance messages are still handled centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in both directions, but with subtly different semantics - from server to client, it's referring to a previously established remote forwarding (and must be rejected if there isn't one that matches it), but from client to server it's just a "direct-tcpip" request with no prior context. So that one is in the client-specific module, and when I add the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
struct ssh1_connection_state *s, PktIn *pktin);
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool ssh1_check_termination(struct ssh1_connection_state *s);
bool ssh1_connection_need_antispoof_prompt(struct ssh1_connection_state *s);