1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/utils/prompts.c

71 lines
1.5 KiB
C
Raw Normal View History

/*
* Functions for making, destroying, and manipulating prompts_t
* structures.
*/
#include "putty.h"
prompts_t *new_prompts(void)
{
prompts_t *p = snew(prompts_t);
p->prompts = NULL;
p->n_prompts = p->prompts_size = 0;
p->data = NULL;
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
p->spr = SPR_INCOMPLETE;
p->to_server = true; /* to be on the safe side */
p->name = p->instruction = NULL;
p->name_reqd = p->instr_reqd = false;
Complete rework of terminal userpass input system. The system for handling seat_get_userpass_input has always been structured differently between GUI PuTTY and CLI tools like Plink. In the CLI tools, password input is read directly from the OS terminal/console device by console_get_userpass_input; this means that you need to ensure the same terminal input data _hasn't_ already been consumed by the main event loop and sent on to the backend. This is achieved by the backend_sendok() method, which tells the event loop when the backend has finished issuing password prompts, and hence, when it's safe to start passing standard input to backend_send(). But in the GUI tools, input generated by the terminal window has always been sent straight to backend_send(), regardless of whether backend_sendok() says it wants it. So the terminal-based implementation of username and password prompts has to work by consuming input data that had _already_ been passed to the backend - hence, any backend that needs to do that must keep its input on a bufchain, and pass that bufchain to seat_get_userpass_input. It's awkward that these two totally different systems coexist in the first place. And now that SSH proxying needs to present interactive prompts of its own, it's clear which one should win: the CLI style is the Right Thing. So this change reworks the GUI side of the mechanism to be more similar: terminal data now goes into a queue in the Ldisc, and is not sent on to the backend until the backend says it's ready for it via backend_sendok(). So terminal-based userpass prompts can now consume data directly from that queue during the connection setup stage. As a result, the 'bufchain *' parameter has vanished from all the userpass_input functions (both the official implementations of the Seat trait method, and term_get_userpass_input() to which some of those implementations delegate). The only function that actually used that bufchain, namely term_get_userpass_input(), now instead reads from the ldisc's input queue via a couple of new Ldisc functions. (Not _trivial_ functions, since input buffered by Ldisc can be a mixture of raw bytes and session specials like SS_EOL! The input queue inside Ldisc is a bufchain containing a fiddly binary encoding that can represent an arbitrary interleaving of those things.) This greatly simplifies the calls to seat_get_userpass_input in backends, which now don't have to mess about with passing their own user_input bufchain around, or toggling their want_user_input flag back and forth to request data to put on to that bufchain. But the flip side is that now there has to be some _other_ method for notifying the terminal when there's more input to be consumed during an interactive prompt, and for notifying the backend when prompt input has finished so that it can proceed to the next stage of the protocol. This is done by a pair of extra callbacks: when more data is put on to Ldisc's input queue, it triggers a call to term_get_userpass_input, and when term_get_userpass_input finishes, it calls a callback function provided in the prompts_t. Therefore, any use of a prompts_t which *might* be asynchronous must fill in the latter callback when setting up the prompts_t. In SSH, the callback is centralised into a common PPL helper function, which reinvokes the same PPL's process_queue coroutine; in rlogin we have to set it up ourselves. I'm sorry for this large and sprawling patch: I tried fairly hard to break it up into individually comprehensible sub-patches, but I just couldn't tease out any part of it that would stand sensibly alone.
2021-09-14 10:57:21 +00:00
p->callback = NULL;
p->callback_ctx = NULL;
p->ldisc_ptr_to_us = NULL;
Add UTF-8 support to the new Windows ConsoleIO system. This allows you to set a flag in conio_setup() which causes the returned ConsoleIO object to interpret all its output as UTF-8, by translating it to UTF-16 and using WriteConsoleW to write it in Unicode. Similarly, input is read using ReadConsoleW and decoded from UTF-16 to UTF-8. This flag is set to false in most places, to avoid making sudden breaking changes. But when we're about to present a prompts_t to the user, it's set from the new 'utf8' flag in that prompt, which in turn is set by the userauth layer in any case where the prompts are going to the server. The idea is that this should be the start of a fix for the long- standing character-set handling bug that strings transmitted during SSH userauth (usernames, passwords, k-i prompts and responses) are all supposed to be in UTF-8, but we've always encoded them in whatever our input system happens to be using, and not done any tidying up on them. We get occasional complaints about this from users whose passwords contain characters that are encoded differently between UTF-8 and their local encoding, but I've never got round to fixing it because it's a large piece of engineering. Indeed, this isn't nearly the end of it. The next step is to add UTF-8 support to all the _other_ ways of presenting a prompts_t, as best we can. Like the previous change to console handling, it seems very likely that this will break someone's workflow. So there's a fallback command-line option '-legacy-charset-handling' to revert to PuTTY's previous behaviour.
2022-11-25 12:57:43 +00:00
p->utf8 = false;
return p;
}
void add_prompt(prompts_t *p, char *promptstr, bool echo)
{
prompt_t *pr = snew(prompt_t);
pr->prompt = promptstr;
pr->echo = echo;
pr->result = strbuf_new_nm();
sgrowarray(p->prompts, p->prompts_size, p->n_prompts);
p->prompts[p->n_prompts++] = pr;
}
void prompt_set_result(prompt_t *pr, const char *newstr)
{
strbuf_clear(pr->result);
put_dataz(pr->result, newstr);
}
const char *prompt_get_result_ref(prompt_t *pr)
{
return pr->result->s;
}
char *prompt_get_result(prompt_t *pr)
{
return dupstr(pr->result->s);
}
void free_prompts(prompts_t *p)
{
size_t i;
/* If an Ldisc currently knows about us, tell it to forget us, so
* it won't dereference a stale pointer later. */
if (p->ldisc_ptr_to_us)
*p->ldisc_ptr_to_us = NULL;
for (i=0; i < p->n_prompts; i++) {
prompt_t *pr = p->prompts[i];
strbuf_free(pr->result);
sfree(pr->prompt);
sfree(pr);
}
sfree(p->prompts);
sfree(p->name);
sfree(p->instruction);
sfree(p);
}