1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
putty-source/keygen/pockle.c

451 lines
14 KiB
C
Raw Normal View History

New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
#include <assert.h>
#include "ssh.h"
#include "sshkeygen.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "tree234.h"
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
typedef struct PocklePrimeRecord PocklePrimeRecord;
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
struct Pockle {
tree234 *tree;
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
PocklePrimeRecord **list;
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
size_t nlist, listsize;
};
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
struct PocklePrimeRecord {
mp_int *prime;
PocklePrimeRecord **factors;
size_t nfactors;
mp_int *witness;
size_t index; /* index in pockle->list */
};
static int ppr_cmp(void *av, void *bv)
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
{
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
PocklePrimeRecord *a = (PocklePrimeRecord *)av;
PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
return mp_cmp_hs(a->prime, b->prime) - mp_cmp_hs(b->prime, a->prime);
}
static int ppr_find(void *av, void *bv)
{
mp_int *a = (mp_int *)av;
PocklePrimeRecord *b = (PocklePrimeRecord *)bv;
return mp_cmp_hs(a, b->prime) - mp_cmp_hs(b->prime, a);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
}
Pockle *pockle_new(void)
{
Pockle *pockle = snew(Pockle);
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
pockle->tree = newtree234(ppr_cmp);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
pockle->list = NULL;
pockle->nlist = pockle->listsize = 0;
return pockle;
}
void pockle_free(Pockle *pockle)
{
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
pockle_release(pockle, 0);
assert(count234(pockle->tree) == 0);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
freetree234(pockle->tree);
sfree(pockle->list);
sfree(pockle);
}
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
static PockleStatus pockle_insert(Pockle *pockle, mp_int *p, mp_int **factors,
size_t nfactors, mp_int *w)
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
{
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
PocklePrimeRecord *pr = snew(PocklePrimeRecord);
pr->prime = mp_copy(p);
PocklePrimeRecord *found = add234(pockle->tree, pr);
if (pr != found) {
/* it was already in there */
mp_free(pr->prime);
sfree(pr);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
return POCKLE_OK;
}
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
if (w) {
pr->factors = snewn(nfactors, PocklePrimeRecord *);
for (size_t i = 0; i < nfactors; i++) {
pr->factors[i] = find234(pockle->tree, factors[i], ppr_find);
assert(pr->factors[i]);
}
pr->nfactors = nfactors;
pr->witness = mp_copy(w);
} else {
pr->factors = NULL;
pr->nfactors = 0;
pr->witness = NULL;
}
pr->index = pockle->nlist;
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
sgrowarray(pockle->list, pockle->listsize, pockle->nlist);
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
pockle->list[pockle->nlist++] = pr;
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
return POCKLE_OK;
}
size_t pockle_mark(Pockle *pockle)
{
return pockle->nlist;
}
void pockle_release(Pockle *pockle, size_t mark)
{
while (pockle->nlist > mark) {
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
PocklePrimeRecord *pr = pockle->list[--pockle->nlist];
del234(pockle->tree, pr);
mp_free(pr->prime);
if (pr->witness)
mp_free(pr->witness);
sfree(pr->factors);
sfree(pr);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
}
}
PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p)
{
if (mp_hs_integer(p, (1ULL << 32)))
return POCKLE_SMALL_PRIME_NOT_SMALL;
uint32_t val = mp_get_integer(p);
if (val < 2)
return POCKLE_PRIME_SMALLER_THAN_2;
init_smallprimes();
for (size_t i = 0; i < NSMALLPRIMES; i++) {
if (val == smallprimes[i])
break; /* success */
if (val % smallprimes[i] == 0)
return POCKLE_SMALL_PRIME_NOT_PRIME;
}
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
return pockle_insert(pockle, p, NULL, 0, NULL);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
}
PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p,
mp_int **factors, size_t nfactors,
mp_int *witness)
{
MontyContext *mc = NULL;
mp_int *x = NULL, *f = NULL, *w = NULL;
PockleStatus status;
/*
* We're going to try to verify that p is prime by using
* Pocklington's theorem. The idea is that we're given w such that
* w^{p-1} == 1 (mod p) (1)
* and for a collection of primes q | p-1,
* w^{(p-1)/q} - 1 is coprime to p. (2)
*
* Suppose r is a prime factor of p itself. Consider the
* multiplicative order of w mod r. By (1), r | w^{p-1}-1. But by
* (2), r does not divide w^{(p-1)/q}-1. So the order of w mod r
* is a factor of p-1, but not a factor of (p-1)/q. Hence, the
* largest power of q that divides p-1 must also divide ord w.
*
* Repeating this reasoning for all q, we find that the product of
* all the q (which we'll denote f) must divide ord w, which in
* turn divides r-1. So f | r-1 for any r | p.
*
* In particular, this means f < r. That is, all primes r | p are
* bigger than f. So if f > sqrt(p), then we've shown p is prime,
* because otherwise it would have to be the product of at least
* two factors bigger than its own square root.
*
* With an extra check, we can also show p to be prime even if
* we're only given enough factors to make f > cbrt(p). See below
* for that part, when we come to it.
*/
/*
* Start by checking p > 1. It certainly can't be prime otherwise!
* (And since we're going to prove it prime by showing all its
* prime factors are large, we do also have to know it _has_ at
* least one prime factor for that to tell us anything.)
*/
if (!mp_hs_integer(p, 2))
return POCKLE_PRIME_SMALLER_THAN_2;
/*
* Check that all the factors we've been given really are primes
* (in the sense that we already had them in our index). Make the
* product f, and check it really does divide p-1.
*/
x = mp_copy(p);
mp_sub_integer_into(x, x, 1);
f = mp_from_integer(1);
for (size_t i = 0; i < nfactors; i++) {
mp_int *q = factors[i];
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
if (!find234(pockle->tree, q, ppr_find)) {
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
status = POCKLE_FACTOR_NOT_KNOWN_PRIME;
goto out;
}
mp_int *quotient = mp_new(mp_max_bits(x));
mp_int *residue = mp_new(mp_max_bits(q));
mp_divmod_into(x, q, quotient, residue);
unsigned exact = mp_eq_integer(residue, 0);
mp_free(residue);
mp_free(x);
x = quotient;
if (!exact) {
status = POCKLE_FACTOR_NOT_A_FACTOR;
goto out;
}
mp_int *tmp = f;
f = mp_unsafe_shrink(mp_mul(tmp, q));
mp_free(tmp);
}
/*
* Check that f > cbrt(p).
*/
mp_int *f2 = mp_mul(f, f);
mp_int *f3 = mp_mul(f2, f);
bool too_big = mp_cmp_hs(p, f3);
mp_free(f3);
mp_free(f2);
if (too_big) {
status = POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL;
goto out;
}
/*
* Now do the extra check that allows us to get away with only
* having f > cbrt(p) instead of f > sqrt(p).
*
* If we can show that f | r-1 for any r | p, then we've ruled out
* p being a product of _more_ than two primes (because then it
* would be the product of at least three things bigger than its
* own cube root). But we still have to rule out it being a
* product of exactly two.
*
* Suppose for the sake of contradiction that p is the product of
* two prime factors. We know both of those factors would have to
* be congruent to 1 mod f. So we'd have to have
*
* p = (uf+1)(vf+1) = (uv)f^2 + (u+v)f + 1 (3)
*
* We can't have uv >= f, or else that expression would come to at
* least f^3, i.e. it would exceed p. So uv < f. Hence, u,v < f as
* well.
*
* Can we have u+v >= f? If we did, then we could write v >= f-u,
* and hence f > uv >= u(f-u). That can be rearranged to show that
* u^2 > (u-1)f; decrementing the LHS makes the inequality no
* longer necessarily strict, so we have u^2-1 >= (u-1)f, and
* dividing off u-1 gives u+1 >= f. But we know u < f, so the only
* way this could happen would be if u=f-1, which makes v=1. But
* _then_ (3) gives us p = (f-1)f^2 + f^2 + 1 = f^3+1. But that
* can't be true if f^3 > p. So we can't have u+v >= f either, by
* contradiction.
*
* After all that, what have we shown? We've shown that we can
* write p = (uv)f^2 + (u+v)f + 1, with both uv and u+v strictly
* less than f. In other words, if you write down p in base f, it
* has exactly three digits, and they are uv, u+v and 1.
*
* But that means we can _find_ u and v: we know p and f, so we
* can just extract those digits of p's base-f representation.
* Once we've done so, they give the sum and product of the
* potential u,v. And given the sum and product of two numbers,
* you can make a quadratic which has those numbers as roots.
*
* We don't actually have to _solve_ the quadratic: all we have to
* do is check if its discriminant is a perfect square. If not,
* we'll know that no integers u,v can match this description.
*/
{
/* We already have x = (p-1)/f. So we just need to write x in
* the form aF + b, and then we have a=uv and b=u+v. */
mp_int *a = mp_new(mp_max_bits(x));
mp_int *b = mp_new(mp_max_bits(f));
mp_divmod_into(x, f, a, b);
assert(!mp_cmp_hs(a, f));
assert(!mp_cmp_hs(b, f));
/* If a=0, then that means p < f^2, so we don't need to do
* this check at all: the straightforward Pocklington theorem
* is all we need. */
if (!mp_eq_integer(a, 0)) {
unsigned perfect_square = 0;
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
mp_int *bsq = mp_mul(b, b);
mp_lshift_fixed_into(a, a, 2);
if (mp_cmp_hs(bsq, a)) {
/* b^2-4a is non-negative, so it might be a square.
* Check it. */
mp_int *discriminant = mp_sub(bsq, a);
mp_int *remainder = mp_new(mp_max_bits(discriminant));
mp_int *root = mp_nthroot(discriminant, 2, remainder);
perfect_square = mp_eq_integer(remainder, 0);
mp_free(discriminant);
mp_free(root);
mp_free(remainder);
}
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
mp_free(bsq);
if (perfect_square) {
mp_free(b);
mp_free(a);
status = POCKLE_DISCRIMINANT_IS_SQUARE;
goto out;
}
}
mp_free(b);
mp_free(a);
}
/*
* Now we've done all the checks that are cheaper than a modpow,
* so we've ruled out as many things as possible before having to
* do any hard work. But there's nothing for it now: make a
* MontyContext.
*/
mc = monty_new(p);
w = monty_import(mc, witness);
/*
* The initial Fermat check: is w^{p-1} itself congruent to 1 mod
* p?
*/
{
mp_int *pm1 = mp_copy(p);
mp_sub_integer_into(pm1, pm1, 1);
mp_int *power = monty_pow(mc, w, pm1);
unsigned fermat_pass = mp_cmp_eq(power, monty_identity(mc));
mp_free(power);
mp_free(pm1);
if (!fermat_pass) {
status = POCKLE_FERMAT_TEST_FAILED;
goto out;
}
}
/*
* And now, for each factor q, is w^{(p-1)/q}-1 coprime to p?
*/
for (size_t i = 0; i < nfactors; i++) {
mp_int *q = factors[i];
mp_int *exponent = mp_unsafe_shrink(mp_div(p, q));
mp_int *power = monty_pow(mc, w, exponent);
mp_int *power_extracted = monty_export(mc, power);
mp_sub_integer_into(power_extracted, power_extracted, 1);
unsigned coprime = mp_coprime(power_extracted, p);
if (!coprime) {
/*
* If w^{(p-1)/q}-1 is not coprime to p, the test has
* failed. But it makes a difference why. If the power of
* w turned out to be 1, so that we took gcd(1-1,p) =
* gcd(0,p) = p, that's like an inconclusive Fermat or M-R
* test: it might just mean you picked a witness integer
* that wasn't a primitive root. But if the power is any
* _other_ value mod p that is not coprime to p, it means
* we've detected that the number is *actually not prime*!
*/
if (mp_eq_integer(power_extracted, 0))
status = POCKLE_WITNESS_POWER_IS_1;
else
status = POCKLE_WITNESS_POWER_NOT_COPRIME;
}
mp_free(exponent);
mp_free(power);
mp_free(power_extracted);
if (!coprime)
goto out; /* with the status we set up above */
}
/*
* Success! p is prime. Insert it into our tree234 of known
* primes, so that future calls to this function can cite it in
* evidence of larger numbers' primality.
*/
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
status = pockle_insert(pockle, p, factors, nfactors, witness);
New 'Pockle' object, for verifying primality. This implements an extended form of primality verification using certificates based on Pocklington's theorem. You make a Pockle object, and then try to convince it that one number after another is prime, by means of providing it with a list of prime factors of p-1 and a primitive root. (Or just by saying 'this prime is small enough for you to check yourself'.) Pocklington's theorem requires you to have factors of p-1 whose product is at least the square root of p. I've extended that to support factorisations only as big as the cube root, via an extension of the theorem given in Maurer's paper on generating provable primes. The Pockle object is more or less write-only: it has no methods for reading out its contents. Its only output channel is the return value when you try to insert a prime into it: if it isn't sufficiently convinced that your prime is prime, it will return an error code. So anything for which it returns POCKLE_OK you can be confident of. I'm going to use this for provable prime generation. But exposing this part of the system as an object in its own right means I can write a set of unit tests for this specifically. My negative tests exercise all the different ways a certification can be erroneous or inadequate; the positive tests include proofs of primality of various primes used in elliptic-curve crypto. The Poly1305 proof in particular is taken from a proof in DJB's paper, which has exactly the form of a Pocklington certificate only written in English.
2020-02-23 15:16:30 +00:00
out:
if (x)
mp_free(x);
if (f)
mp_free(f);
if (w)
mp_free(w);
if (mc)
monty_free(mc);
return status;
}
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
static void mp_write_decimal(strbuf *sb, mp_int *x)
{
char *s = mp_get_decimal(x);
ptrlen pl = ptrlen_from_asciz(s);
put_datapl(sb, pl);
smemclr(s, pl.len);
sfree(s);
}
strbuf *pockle_mpu(Pockle *pockle, mp_int *p)
{
strbuf *sb = strbuf_new_nm();
PocklePrimeRecord *pr = find234(pockle->tree, p, ppr_find);
assert(pr);
bool *needed = snewn(pockle->nlist, bool);
memset(needed, 0, pockle->nlist * sizeof(bool));
needed[pr->index] = true;
put_fmt(sb, "[MPU - Primality Certificate]\nVersion 1.0\nBase 10\n\n"
"Proof for:\nN ");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
mp_write_decimal(sb, p);
put_fmt(sb, "\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
for (size_t index = pockle->nlist; index-- > 0 ;) {
if (!needed[index])
continue;
pr = pockle->list[index];
if (mp_get_nbits(pr->prime) <= 64) {
put_fmt(sb, "\nType Small\nN ");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
mp_write_decimal(sb, pr->prime);
put_fmt(sb, "\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
} else {
assert(pr->witness);
put_fmt(sb, "\nType BLS5\nN ");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
mp_write_decimal(sb, pr->prime);
put_fmt(sb, "\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
for (size_t i = 0; i < pr->nfactors; i++) {
put_fmt(sb, "Q[%"SIZEu"] ", i+1);
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
mp_write_decimal(sb, pr->factors[i]->prime);
assert(pr->factors[i]->index < index);
needed[pr->factors[i]->index] = true;
put_fmt(sb, "\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
}
for (size_t i = 0; i < pr->nfactors + 1; i++) {
put_fmt(sb, "A[%"SIZEu"] ", i);
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
mp_write_decimal(sb, pr->witness);
put_fmt(sb, "\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
}
put_fmt(sb, "----\n");
Generate MPU certificates for proven primes. Conveniently checkable certificates of primality aren't a new concept. I didn't invent them, and I wasn't the first to implement them. Given that, I thought it might be useful to be able to independently verify a prime generated by PuTTY's provable prime system. Then, even if you don't trust _this_ code, you might still trust someone else's verifier, or at least be less willing to believe that both were colluding. The Perl module Math::Prime::Util is the only free software I've found that defines a specific text-file format for certificates of primality. The MPU format (as it calls it) supports various different methods of certifying the primality of a number (most of which, like Pockle's, depend on having previously proved some smaller number(s) to be prime). The system implemented by Pockle is on its list: MPU calls it by the name "BLS5". So this commit introduces extra stored data inside Pockle so that it remembers not just _that_ it believes certain numbers to be prime, but also _why_ it believed each one to be prime. Then there's an extra method in the Pockle API to translate its internal data structures into the text of an MPU certificate for any number it knows about. Math::Prime::Util doesn't come with a command-line verification tool, unfortunately; only a Perl function which you feed a string argument. So also in this commit I add test/mpu-check.pl, which is a trivial command-line client of that function. At the moment, this new piece of API is only exposed via testcrypt. I could easily put some user interface into the key generation tools that would save a few primality certificates alongside the private key, but I have yet to think of any good reason to do it. Mostly this facility is intended for debugging and cross-checking of the _algorithm_, not of any particular prime.
2020-02-29 06:44:13 +00:00
}
}
sfree(needed);
return sb;
}