1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
putty-source/x11fwd.c

1091 lines
33 KiB
C
Raw Normal View History

/*
* Platform-independent bits of X11 forwarding.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
#include "putty.h"
#include "ssh.h"
#include "tree234.h"
#define GET_16BIT(endian, cp) \
(endian=='B' ? GET_16BIT_MSB_FIRST(cp) : GET_16BIT_LSB_FIRST(cp))
#define PUT_16BIT(endian, cp, val) \
(endian=='B' ? PUT_16BIT_MSB_FIRST(cp, val) : PUT_16BIT_LSB_FIRST(cp, val))
const char *const x11_authnames[] = {
"", "MIT-MAGIC-COOKIE-1", "XDM-AUTHORIZATION-1"
};
struct XDMSeen {
unsigned int time;
unsigned char clientid[6];
};
struct X11Connection {
const struct plug_function_table *fn;
/* the above variable absolutely *must* be the first in this structure */
unsigned char firstpkt[12]; /* first X data packet */
tree234 *authtree;
struct X11Display *disp;
char *auth_protocol;
unsigned char *auth_data;
int data_read, auth_plen, auth_psize, auth_dlen, auth_dsize;
int verified;
int throttled, throttle_override;
int no_data_sent_to_x_client;
char *peer_addr;
int peer_port;
struct ssh_channel *c; /* channel structure held by ssh.c */
Socket s;
};
static int xdmseen_cmp(void *a, void *b)
{
struct XDMSeen *sa = a, *sb = b;
return sa->time > sb->time ? 1 :
sa->time < sb->time ? -1 :
memcmp(sa->clientid, sb->clientid, sizeof(sa->clientid));
}
/* Do-nothing "plug" implementation, used by x11_setup_display() when it
* creates a trial connection (and then immediately closes it).
* XXX: bit out of place here, could in principle live in a platform-
* independent network.c or something */
static void dummy_plug_log(Plug p, int type, SockAddr addr, int port,
const char *error_msg, int error_code) { }
static int dummy_plug_closing
(Plug p, const char *error_msg, int error_code, int calling_back)
{ return 1; }
static int dummy_plug_receive(Plug p, int urgent, char *data, int len)
{ return 1; }
static void dummy_plug_sent(Plug p, int bufsize) { }
static int dummy_plug_accepting(Plug p, accept_fn_t constructor, accept_ctx_t ctx) { return 1; }
static const struct plug_function_table dummy_plug = {
dummy_plug_log, dummy_plug_closing, dummy_plug_receive,
dummy_plug_sent, dummy_plug_accepting
};
struct X11FakeAuth *x11_invent_fake_auth(tree234 *authtree, int authtype)
{
struct X11FakeAuth *auth = snew(struct X11FakeAuth);
int i;
/*
* This function has the job of inventing a set of X11 fake auth
* data, and adding it to 'authtree'. We must preserve the
* property that for any given actual authorisation attempt, _at
* most one_ thing in the tree can possibly match it.
*
* For MIT-MAGIC-COOKIE-1, that's not too difficult: the match
* criterion is simply that the entire cookie is correct, so we
* just have to make sure we don't make up two cookies the same.
* (Vanishingly unlikely, but we check anyway to be sure, and go
* round again inventing a new cookie if add234 tells us the one
* we thought of is already in use.)
*
* For XDM-AUTHORIZATION-1, it's a little more fiddly. The setup
* with XA1 is that half the cookie is used as a DES key with
* which to CBC-encrypt an assortment of stuff. Happily, the stuff
* encrypted _begins_ with the other half of the cookie, and the
* IV is always zero, which means that any valid XA1 authorisation
* attempt for a given cookie must begin with the same cipher
* block, consisting of the DES ECB encryption of the first half
* of the cookie using the second half as a key. So we compute
* that cipher block here and now, and use it as the sorting key
* for distinguishing XA1 entries in the tree.
*/
if (authtype == X11_MIT) {
auth->proto = X11_MIT;
/* MIT-MAGIC-COOKIE-1. Cookie size is 128 bits (16 bytes). */
auth->datalen = 16;
auth->data = snewn(auth->datalen, unsigned char);
auth->xa1_firstblock = NULL;
while (1) {
for (i = 0; i < auth->datalen; i++)
auth->data[i] = random_byte();
if (add234(authtree, auth) == auth)
break;
}
auth->xdmseen = NULL;
} else {
assert(authtype == X11_XDM);
auth->proto = X11_XDM;
/* XDM-AUTHORIZATION-1. Cookie size is 16 bytes; byte 8 is zero. */
auth->datalen = 16;
auth->data = snewn(auth->datalen, unsigned char);
auth->xa1_firstblock = snewn(8, unsigned char);
memset(auth->xa1_firstblock, 0, 8);
while (1) {
for (i = 0; i < auth->datalen; i++)
auth->data[i] = (i == 8 ? 0 : random_byte());
memcpy(auth->xa1_firstblock, auth->data, 8);
des_encrypt_xdmauth(auth->data + 9, auth->xa1_firstblock, 8);
if (add234(authtree, auth) == auth)
break;
}
auth->xdmseen = newtree234(xdmseen_cmp);
}
auth->protoname = dupstr(x11_authnames[auth->proto]);
auth->datastring = snewn(auth->datalen * 2 + 1, char);
for (i = 0; i < auth->datalen; i++)
sprintf(auth->datastring + i*2, "%02x",
auth->data[i]);
auth->disp = NULL;
auth->share_cs = auth->share_chan = NULL;
return auth;
}
void x11_free_fake_auth(struct X11FakeAuth *auth)
{
if (auth->data)
smemclr(auth->data, auth->datalen);
sfree(auth->data);
sfree(auth->protoname);
sfree(auth->datastring);
sfree(auth->xa1_firstblock);
if (auth->xdmseen != NULL) {
struct XDMSeen *seen;
while ((seen = delpos234(auth->xdmseen, 0)) != NULL)
sfree(seen);
freetree234(auth->xdmseen);
}
sfree(auth);
}
int x11_authcmp(void *av, void *bv)
{
struct X11FakeAuth *a = (struct X11FakeAuth *)av;
struct X11FakeAuth *b = (struct X11FakeAuth *)bv;
if (a->proto < b->proto)
return -1;
else if (a->proto > b->proto)
return +1;
if (a->proto == X11_MIT) {
if (a->datalen < b->datalen)
return -1;
else if (a->datalen > b->datalen)
return +1;
return memcmp(a->data, b->data, a->datalen);
} else {
assert(a->proto == X11_XDM);
return memcmp(a->xa1_firstblock, b->xa1_firstblock, 8);
}
}
struct X11Display *x11_setup_display(const char *display, Conf *conf)
{
struct X11Display *disp = snew(struct X11Display);
char *localcopy;
if (!display || !*display) {
localcopy = platform_get_x_display();
if (!localcopy || !*localcopy) {
sfree(localcopy);
localcopy = dupstr(":0"); /* plausible default for any platform */
}
} else
localcopy = dupstr(display);
/*
* Parse the display name.
*
* We expect this to have one of the following forms:
*
* - the standard X format which looks like
* [ [ protocol '/' ] host ] ':' displaynumber [ '.' screennumber ]
* (X11 also permits a double colon to indicate DECnet, but
* that's not our problem, thankfully!)
*
* - only seen in the wild on MacOS (so far): a pathname to a
* Unix-domain socket, which will typically and confusingly
* end in ":0", and which I'm currently distinguishing from
* the standard scheme by noting that it starts with '/'.
*/
if (localcopy[0] == '/') {
disp->unixsocketpath = localcopy;
disp->unixdomain = TRUE;
disp->hostname = NULL;
disp->displaynum = -1;
disp->screennum = 0;
disp->addr = NULL;
} else {
char *colon, *dot, *slash;
char *protocol, *hostname;
colon = host_strrchr(localcopy, ':');
if (!colon) {
sfree(disp);
sfree(localcopy);
return NULL; /* FIXME: report a specific error? */
}
*colon++ = '\0';
dot = strchr(colon, '.');
if (dot)
*dot++ = '\0';
disp->displaynum = atoi(colon);
if (dot)
disp->screennum = atoi(dot);
else
disp->screennum = 0;
protocol = NULL;
hostname = localcopy;
if (colon > localcopy) {
slash = strchr(localcopy, '/');
if (slash) {
*slash++ = '\0';
protocol = localcopy;
hostname = slash;
}
}
disp->hostname = *hostname ? dupstr(hostname) : NULL;
if (protocol)
disp->unixdomain = (!strcmp(protocol, "local") ||
!strcmp(protocol, "unix"));
else if (!*hostname || !strcmp(hostname, "unix"))
disp->unixdomain = platform_uses_x11_unix_by_default;
else
disp->unixdomain = FALSE;
if (!disp->hostname && !disp->unixdomain)
disp->hostname = dupstr("localhost");
disp->unixsocketpath = NULL;
disp->addr = NULL;
sfree(localcopy);
}
/*
* Look up the display hostname, if we need to.
*/
if (!disp->unixdomain) {
const char *err;
disp->port = 6000 + disp->displaynum;
disp->addr = name_lookup(disp->hostname, disp->port,
&disp->realhost, conf, ADDRTYPE_UNSPEC,
NULL, NULL);
if ((err = sk_addr_error(disp->addr)) != NULL) {
sk_addr_free(disp->addr);
sfree(disp->hostname);
sfree(disp->unixsocketpath);
sfree(disp);
return NULL; /* FIXME: report an error */
}
}
/*
* Try upgrading an IP-style localhost display to a Unix-socket
* display (as the standard X connection libraries do).
*/
if (!disp->unixdomain && sk_address_is_local(disp->addr)) {
SockAddr ux = platform_get_x11_unix_address(NULL, disp->displaynum);
const char *err = sk_addr_error(ux);
if (!err) {
/* Create trial connection to see if there is a useful Unix-domain
* socket */
const struct plug_function_table *dummy = &dummy_plug;
Socket s = sk_new(sk_addr_dup(ux), 0, 0, 0, 0, 0, (Plug)&dummy);
err = sk_socket_error(s);
sk_close(s);
}
if (err) {
sk_addr_free(ux);
} else {
sk_addr_free(disp->addr);
disp->unixdomain = TRUE;
disp->addr = ux;
/* Fill in the rest in a moment */
}
}
if (disp->unixdomain) {
if (!disp->addr)
disp->addr = platform_get_x11_unix_address(disp->unixsocketpath,
disp->displaynum);
if (disp->unixsocketpath)
disp->realhost = dupstr(disp->unixsocketpath);
else
disp->realhost = dupprintf("unix:%d", disp->displaynum);
disp->port = 0;
}
/*
* Fetch the local authorisation details.
*/
disp->localauthproto = X11_NO_AUTH;
disp->localauthdata = NULL;
disp->localauthdatalen = 0;
Post-release destabilisation! Completely remove the struct type 'Config' in putty.h, which stores all PuTTY's settings and includes an arbitrary length limit on every single one of those settings which is stored in string form. In place of it is 'Conf', an opaque data type everywhere outside the new file conf.c, which stores a list of (key, value) pairs in which every key contains an integer identifying a configuration setting, and for some of those integers the key also contains extra parts (so that, for instance, CONF_environmt is a string-to-string mapping). Everywhere that a Config was previously used, a Conf is now; everywhere there was a Config structure copy, conf_copy() is called; every lookup, adjustment, load and save operation on a Config has been rewritten; and there's a mechanism for serialising a Conf into a binary blob and back for use with Duplicate Session. User-visible effects of this change _should_ be minimal, though I don't doubt I've introduced one or two bugs here and there which will eventually be found. The _intended_ visible effects of this change are that all arbitrary limits on configuration strings and lists (e.g. limit on number of port forwardings) should now disappear; that list boxes in the configuration will now be displayed in a sorted order rather than the arbitrary order in which they were added to the list (since the underlying data structure is now a sorted tree234 rather than an ad-hoc comma-separated string); and one more specific change, which is that local and dynamic port forwardings on the same port number are now mutually exclusive in the configuration (putting 'D' in the key rather than the value was a mistake in the first place). One other reorganisation as a result of this is that I've moved all the dialog.c standard handlers (dlg_stdeditbox_handler and friends) out into config.c, because I can't really justify calling them generic any more. When they took a pointer to an arbitrary structure type and the offset of a field within that structure, they were independent of whether that structure was a Config or something completely different, but now they really do expect to talk to a Conf, which can _only_ be used for PuTTY configuration, so I've renamed them all things like conf_editbox_handler and moved them out of the nominally independent dialog-box management module into the PuTTY-specific config.c. [originally from svn r9214]
2011-07-14 18:52:21 +00:00
platform_get_x11_auth(disp, conf);
return disp;
}
void x11_free_display(struct X11Display *disp)
{
sfree(disp->hostname);
sfree(disp->unixsocketpath);
if (disp->localauthdata)
smemclr(disp->localauthdata, disp->localauthdatalen);
sfree(disp->localauthdata);
sk_addr_free(disp->addr);
sfree(disp);
}
#define XDM_MAXSKEW 20*60 /* 20 minute clock skew should be OK */
static const char *x11_verify(unsigned long peer_ip, int peer_port,
tree234 *authtree, char *proto,
unsigned char *data, int dlen,
struct X11FakeAuth **auth_ret)
{
struct X11FakeAuth match_dummy; /* for passing to find234 */
struct X11FakeAuth *auth;
/*
* First, do a lookup in our tree to find the only authorisation
* record that _might_ match.
*/
if (!strcmp(proto, x11_authnames[X11_MIT])) {
/*
* Just look up the whole cookie that was presented to us,
* which x11_authcmp will compare against the cookies we
* currently believe in.
*/
match_dummy.proto = X11_MIT;
match_dummy.datalen = dlen;
match_dummy.data = data;
} else if (!strcmp(proto, x11_authnames[X11_XDM])) {
/*
* Look up the first cipher block, against the stored first
* cipher blocks for the XDM-AUTHORIZATION-1 cookies we
* currently know. (See comment in x11_invent_fake_auth.)
*/
match_dummy.proto = X11_XDM;
match_dummy.xa1_firstblock = data;
} else {
return "Unsupported authorisation protocol";
}
if ((auth = find234(authtree, &match_dummy, 0)) == NULL)
return "Authorisation not recognised";
/*
* If we're using MIT-MAGIC-COOKIE-1, that was all we needed. If
* we're doing XDM-AUTHORIZATION-1, though, we have to check the
* rest of the auth data.
*/
if (auth->proto == X11_XDM) {
unsigned long t;
time_t tim;
int i;
struct XDMSeen *seen, *ret;
if (dlen != 24)
return "XDM-AUTHORIZATION-1 data was wrong length";
if (peer_port == -1)
return "cannot do XDM-AUTHORIZATION-1 without remote address data";
des_decrypt_xdmauth(auth->data+9, data, 24);
if (memcmp(auth->data, data, 8) != 0)
return "XDM-AUTHORIZATION-1 data failed check"; /* cookie wrong */
if (GET_32BIT_MSB_FIRST(data+8) != peer_ip)
return "XDM-AUTHORIZATION-1 data failed check"; /* IP wrong */
if ((int)GET_16BIT_MSB_FIRST(data+12) != peer_port)
return "XDM-AUTHORIZATION-1 data failed check"; /* port wrong */
t = GET_32BIT_MSB_FIRST(data+14);
for (i = 18; i < 24; i++)
if (data[i] != 0) /* zero padding wrong */
return "XDM-AUTHORIZATION-1 data failed check";
tim = time(NULL);
if (((unsigned long)t - (unsigned long)tim
+ XDM_MAXSKEW) > 2*XDM_MAXSKEW)
return "XDM-AUTHORIZATION-1 time stamp was too far out";
seen = snew(struct XDMSeen);
seen->time = t;
memcpy(seen->clientid, data+8, 6);
assert(auth->xdmseen != NULL);
ret = add234(auth->xdmseen, seen);
if (ret != seen) {
sfree(seen);
return "XDM-AUTHORIZATION-1 data replayed";
}
/* While we're here, purge entries too old to be replayed. */
for (;;) {
seen = index234(auth->xdmseen, 0);
assert(seen != NULL);
if (t - seen->time <= XDM_MAXSKEW)
break;
sfree(delpos234(auth->xdmseen, 0));
}
}
/* implement other protocols here if ever required */
*auth_ret = auth;
return NULL;
}
void x11_get_auth_from_authfile(struct X11Display *disp,
const char *authfilename)
{
FILE *authfp;
char *buf, *ptr, *str[4];
int len[4];
int family, protocol;
int ideal_match = FALSE;
char *ourhostname;
/*
* Normally we should look for precisely the details specified in
* `disp'. However, there's an oddity when the display is local:
* displays like "localhost:0" usually have their details stored
* in a Unix-domain-socket record (even if there isn't actually a
* real Unix-domain socket available, as with OpenSSH's proxy X11
* server).
*
* This is apparently a fudge to get round the meaninglessness of
* "localhost" in a shared-home-directory context -- xauth entries
* for Unix-domain sockets already disambiguate this by storing
* the *local* hostname in the conveniently-blank hostname field,
* but IP "localhost" records couldn't do this. So, typically, an
* IP "localhost" entry in the auth database isn't present and if
* it were it would be ignored.
*
* However, we don't entirely trust that (say) Windows X servers
* won't rely on a straight "localhost" entry, bad idea though
* that is; so if we can't find a Unix-domain-socket entry we'll
* fall back to an IP-based entry if we can find one.
*/
int localhost = !disp->unixdomain && sk_address_is_local(disp->addr);
authfp = fopen(authfilename, "rb");
if (!authfp)
return;
ourhostname = get_hostname();
/* Records in .Xauthority contain four strings of up to 64K each */
buf = snewn(65537 * 4, char);
while (!ideal_match) {
int c, i, j, match = FALSE;
#define GET do { c = fgetc(authfp); if (c == EOF) goto done; c = (unsigned char)c; } while (0)
/* Expect a big-endian 2-byte number giving address family */
GET; family = c;
GET; family = (family << 8) | c;
/* Then expect four strings, each composed of a big-endian 2-byte
* length field followed by that many bytes of data */
ptr = buf;
for (i = 0; i < 4; i++) {
GET; len[i] = c;
GET; len[i] = (len[i] << 8) | c;
str[i] = ptr;
for (j = 0; j < len[i]; j++) {
GET; *ptr++ = c;
}
*ptr++ = '\0';
}
#undef GET
/*
* Now we have a full X authority record in memory. See
* whether it matches the display we're trying to
* authenticate to.
*
* The details we've just read should be interpreted as
* follows:
*
* - 'family' is the network address family used to
* connect to the display. 0 means IPv4; 6 means IPv6;
* 256 means Unix-domain sockets.
*
* - str[0] is the network address itself. For IPv4 and
* IPv6, this is a string of binary data of the
* appropriate length (respectively 4 and 16 bytes)
* representing the address in big-endian format, e.g.
* 7F 00 00 01 means IPv4 localhost. For Unix-domain
* sockets, this is the host name of the machine on
* which the Unix-domain display resides (so that an
* .Xauthority file on a shared file system can contain
* authority entries for Unix-domain displays on
* several machines without them clashing).
*
* - str[1] is the display number. I've no idea why
* .Xauthority stores this as a string when it has a
* perfectly good integer format, but there we go.
*
* - str[2] is the authorisation method, encoded as its
* canonical string name (i.e. "MIT-MAGIC-COOKIE-1",
* "XDM-AUTHORIZATION-1" or something we don't
* recognise).
*
* - str[3] is the actual authorisation data, stored in
* binary form.
*/
if (disp->displaynum < 0 || disp->displaynum != atoi(str[1]))
continue; /* not the one */
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
if (!strcmp(str[2], x11_authnames[protocol]))
break;
if (protocol == lenof(x11_authnames))
continue; /* don't recognise this protocol, look for another */
switch (family) {
case 0: /* IPv4 */
if (!disp->unixdomain &&
sk_addrtype(disp->addr) == ADDRTYPE_IPV4) {
char buf[4];
sk_addrcopy(disp->addr, buf);
if (len[0] == 4 && !memcmp(str[0], buf, 4)) {
match = TRUE;
/* If this is a "localhost" entry, note it down
* but carry on looking for a Unix-domain entry. */
ideal_match = !localhost;
}
}
break;
case 6: /* IPv6 */
if (!disp->unixdomain &&
sk_addrtype(disp->addr) == ADDRTYPE_IPV6) {
char buf[16];
sk_addrcopy(disp->addr, buf);
if (len[0] == 16 && !memcmp(str[0], buf, 16)) {
match = TRUE;
ideal_match = !localhost;
}
}
break;
case 256: /* Unix-domain / localhost */
if ((disp->unixdomain || localhost)
&& ourhostname && !strcmp(ourhostname, str[0]))
/* A matching Unix-domain socket is always the best
* match. */
match = ideal_match = TRUE;
break;
}
if (match) {
/* Current best guess -- may be overridden if !ideal_match */
disp->localauthproto = protocol;
sfree(disp->localauthdata); /* free previous guess, if any */
disp->localauthdata = snewn(len[3], unsigned char);
memcpy(disp->localauthdata, str[3], len[3]);
disp->localauthdatalen = len[3];
}
}
done:
fclose(authfp);
smemclr(buf, 65537 * 4);
sfree(buf);
sfree(ourhostname);
}
static void x11_log(Plug p, int type, SockAddr addr, int port,
const char *error_msg, int error_code)
{
/* We have no interface to the logging module here, so we drop these. */
}
static void x11_send_init_error(struct X11Connection *conn,
const char *err_message);
static int x11_closing(Plug plug, const char *error_msg, int error_code,
int calling_back)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
if (error_msg) {
/*
* Socket error. If we're still at the connection setup stage,
* construct an X11 error packet passing on the problem.
*/
if (xconn->no_data_sent_to_x_client) {
char *err_message = dupprintf("unable to connect to forwarded "
"X server: %s", error_msg);
x11_send_init_error(xconn, err_message);
sfree(err_message);
}
/*
* Whether we did that or not, now we slam the connection
* shut.
*/
sshfwd_unclean_close(xconn->c, error_msg);
} else {
/*
* Ordinary EOF received on socket. Send an EOF on the SSH
* channel.
*/
if (xconn->c)
sshfwd_write_eof(xconn->c);
}
return 1;
}
static int x11_receive(Plug plug, int urgent, char *data, int len)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
if (sshfwd_write(xconn->c, data, len) > 0) {
xconn->throttled = 1;
xconn->no_data_sent_to_x_client = FALSE;
sk_set_frozen(xconn->s, 1);
}
return 1;
}
static void x11_sent(Plug plug, int bufsize)
{
struct X11Connection *xconn = (struct X11Connection *) plug;
sshfwd_unthrottle(xconn->c, bufsize);
}
/*
* When setting up X forwarding, we should send the screen number
* from the specified local display. This function extracts it from
* the display string.
*/
int x11_get_screen_number(char *display)
{
int n;
n = host_strcspn(display, ":");
if (!display[n])
return 0;
n = strcspn(display, ".");
if (!display[n])
return 0;
return atoi(display + n + 1);
}
/*
* Called to set up the X11Connection structure, though this does not
* yet connect to an actual server.
*/
struct X11Connection *x11_init(tree234 *authtree, void *c,
const char *peeraddr, int peerport)
{
static const struct plug_function_table fn_table = {
x11_log,
x11_closing,
x11_receive,
x11_sent,
NULL
};
struct X11Connection *xconn;
/*
* Open socket.
*/
xconn = snew(struct X11Connection);
xconn->fn = &fn_table;
xconn->auth_protocol = NULL;
xconn->authtree = authtree;
xconn->verified = 0;
xconn->data_read = 0;
xconn->throttled = xconn->throttle_override = 0;
xconn->no_data_sent_to_x_client = TRUE;
xconn->c = c;
/*
* We don't actually open a local socket to the X server just yet,
* because we don't know which one it is. Instead, we'll wait
* until we see the incoming authentication data, which may tell
* us what display to connect to, or whether we have to divert
* this X forwarding channel to a connection-sharing downstream
* rather than handling it ourself.
*/
xconn->disp = NULL;
xconn->s = NULL;
/*
* Stash the peer address we were given in its original text form.
*/
xconn->peer_addr = peeraddr ? dupstr(peeraddr) : NULL;
xconn->peer_port = peerport;
return xconn;
}
void x11_close(struct X11Connection *xconn)
{
if (!xconn)
return;
if (xconn->auth_protocol) {
sfree(xconn->auth_protocol);
sfree(xconn->auth_data);
}
if (xconn->s)
sk_close(xconn->s);
sfree(xconn->peer_addr);
sfree(xconn);
}
void x11_unthrottle(struct X11Connection *xconn)
{
if (!xconn)
return;
xconn->throttled = 0;
if (xconn->s)
sk_set_frozen(xconn->s, xconn->throttled || xconn->throttle_override);
}
void x11_override_throttle(struct X11Connection *xconn, int enable)
{
if (!xconn)
return;
xconn->throttle_override = enable;
if (xconn->s)
sk_set_frozen(xconn->s, xconn->throttled || xconn->throttle_override);
}
static void x11_send_init_error(struct X11Connection *xconn,
const char *err_message)
{
char *full_message;
int msglen, msgsize;
unsigned char *reply;
full_message = dupprintf("%s X11 proxy: %s\n", appname, err_message);
msglen = strlen(full_message);
reply = snewn(8 + msglen+1 + 4, unsigned char); /* include zero */
msgsize = (msglen + 3) & ~3;
reply[0] = 0; /* failure */
reply[1] = msglen; /* length of reason string */
memcpy(reply + 2, xconn->firstpkt + 2, 4); /* major/minor proto vsn */
PUT_16BIT(xconn->firstpkt[0], reply + 6, msgsize >> 2);/* data len */
memset(reply + 8, 0, msgsize);
memcpy(reply + 8, full_message, msglen);
sshfwd_write(xconn->c, (char *)reply, 8 + msgsize);
sshfwd_write_eof(xconn->c);
xconn->no_data_sent_to_x_client = FALSE;
sfree(reply);
sfree(full_message);
}
static int x11_parse_ip(const char *addr_string, unsigned long *ip)
{
/*
* See if we can make sense of this string as an IPv4 address, for
* XDM-AUTHORIZATION-1 purposes.
*/
int i[4];
if (addr_string &&
4 == sscanf(addr_string, "%d.%d.%d.%d", i+0, i+1, i+2, i+3)) {
*ip = (i[0] << 24) | (i[1] << 16) | (i[2] << 8) | i[3];
return TRUE;
} else {
return FALSE;
}
}
/*
* Called to send data down the raw connection.
*/
int x11_send(struct X11Connection *xconn, char *data, int len)
{
if (!xconn)
return 0;
/*
* Read the first packet.
*/
while (len > 0 && xconn->data_read < 12)
xconn->firstpkt[xconn->data_read++] = (unsigned char) (len--, *data++);
if (xconn->data_read < 12)
return 0;
/*
* If we have not allocated the auth_protocol and auth_data
* strings, do so now.
*/
if (!xconn->auth_protocol) {
xconn->auth_plen = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 6);
xconn->auth_dlen = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 8);
xconn->auth_psize = (xconn->auth_plen + 3) & ~3;
xconn->auth_dsize = (xconn->auth_dlen + 3) & ~3;
/* Leave room for a terminating zero, to make our lives easier. */
xconn->auth_protocol = snewn(xconn->auth_psize + 1, char);
xconn->auth_data = snewn(xconn->auth_dsize, unsigned char);
}
/*
* Read the auth_protocol and auth_data strings.
*/
while (len > 0 &&
xconn->data_read < 12 + xconn->auth_psize)
xconn->auth_protocol[xconn->data_read++ - 12] = (len--, *data++);
while (len > 0 &&
xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
xconn->auth_data[xconn->data_read++ - 12 -
xconn->auth_psize] = (unsigned char) (len--, *data++);
if (xconn->data_read < 12 + xconn->auth_psize + xconn->auth_dsize)
return 0;
/*
* If we haven't verified the authorisation, do so now.
*/
if (!xconn->verified) {
const char *err;
struct X11FakeAuth *auth_matched = NULL;
unsigned long peer_ip;
int peer_port;
int protomajor, protominor;
void *greeting;
int greeting_len;
unsigned char *socketdata;
int socketdatalen;
char new_peer_addr[32];
int new_peer_port;
protomajor = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 2);
protominor = GET_16BIT(xconn->firstpkt[0], xconn->firstpkt + 4);
assert(!xconn->s);
xconn->auth_protocol[xconn->auth_plen] = '\0'; /* ASCIZ */
peer_ip = 0; /* placate optimiser */
if (x11_parse_ip(xconn->peer_addr, &peer_ip))
peer_port = xconn->peer_port;
else
peer_port = -1; /* signal no peer address data available */
err = x11_verify(peer_ip, peer_port,
xconn->authtree, xconn->auth_protocol,
xconn->auth_data, xconn->auth_dlen, &auth_matched);
if (err) {
x11_send_init_error(xconn, err);
return 0;
}
assert(auth_matched);
/*
* If this auth points to a connection-sharing downstream
* rather than an X display we know how to connect to
* directly, pass it off to the sharing module now.
*/
if (auth_matched->share_cs) {
sshfwd_x11_sharing_handover(xconn->c, auth_matched->share_cs,
auth_matched->share_chan,
xconn->peer_addr, xconn->peer_port,
xconn->firstpkt[0],
protomajor, protominor, data, len);
return 0;
}
/*
* Now we know we're going to accept the connection, and what
* X display to connect to. Actually connect to it.
*/
sshfwd_x11_is_local(xconn->c);
xconn->disp = auth_matched->disp;
xconn->s = new_connection(sk_addr_dup(xconn->disp->addr),
xconn->disp->realhost, xconn->disp->port,
0, 1, 0, 0, (Plug) xconn,
sshfwd_get_conf(xconn->c));
if ((err = sk_socket_error(xconn->s)) != NULL) {
char *err_message = dupprintf("unable to connect to"
" forwarded X server: %s", err);
x11_send_init_error(xconn, err_message);
sfree(err_message);
return 0;
}
/*
* Write a new connection header containing our replacement
* auth data.
*/
socketdata = sk_getxdmdata(xconn->s, &socketdatalen);
if (socketdata && socketdatalen==6) {
sprintf(new_peer_addr, "%d.%d.%d.%d", socketdata[0],
socketdata[1], socketdata[2], socketdata[3]);
new_peer_port = GET_16BIT_MSB_FIRST(socketdata + 4);
} else {
strcpy(new_peer_addr, "0.0.0.0");
new_peer_port = 0;
}
greeting = x11_make_greeting(xconn->firstpkt[0],
protomajor, protominor,
xconn->disp->localauthproto,
xconn->disp->localauthdata,
xconn->disp->localauthdatalen,
new_peer_addr, new_peer_port,
&greeting_len);
sk_write(xconn->s, greeting, greeting_len);
smemclr(greeting, greeting_len);
sfree(greeting);
/*
* Now we're done.
*/
xconn->verified = 1;
}
/*
* After initialisation, just copy data simply.
*/
return sk_write(xconn->s, data, len);
}
void x11_send_eof(struct X11Connection *xconn)
{
if (xconn->s) {
sk_write_eof(xconn->s);
} else {
/*
* If EOF is received from the X client before we've got to
* the point of actually connecting to an X server, then we
* should send an EOF back to the client so that the
* forwarded channel will be terminated.
*/
if (xconn->c)
sshfwd_write_eof(xconn->c);
}
}
/*
* Utility functions used by connection sharing to convert textual
* representations of an X11 auth protocol name + hex cookie into our
* usual integer protocol id and binary auth data.
*/
int x11_identify_auth_proto(const char *protoname)
{
int protocol;
for (protocol = 1; protocol < lenof(x11_authnames); protocol++)
if (!strcmp(protoname, x11_authnames[protocol]))
return protocol;
return -1;
}
void *x11_dehexify(const char *hex, int *outlen)
{
int len, i;
unsigned char *ret;
len = strlen(hex) / 2;
ret = snewn(len, unsigned char);
for (i = 0; i < len; i++) {
char bytestr[3];
unsigned val = 0;
bytestr[0] = hex[2*i];
bytestr[1] = hex[2*i+1];
bytestr[2] = '\0';
sscanf(bytestr, "%x", &val);
ret[i] = val;
}
*outlen = len;
return ret;
}
/*
* Construct an X11 greeting packet, including making up the right
* authorisation data.
*/
void *x11_make_greeting(int endian, int protomajor, int protominor,
int auth_proto, const void *auth_data, int auth_len,
const char *peer_addr, int peer_port,
int *outlen)
{
unsigned char *greeting;
unsigned char realauthdata[64];
const char *authname;
const unsigned char *authdata;
int authnamelen, authnamelen_pad;
int authdatalen, authdatalen_pad;
int greeting_len;
authname = x11_authnames[auth_proto];
authnamelen = strlen(authname);
authnamelen_pad = (authnamelen + 3) & ~3;
if (auth_proto == X11_MIT) {
authdata = auth_data;
authdatalen = auth_len;
} else if (auth_proto == X11_XDM && auth_len == 16) {
time_t t;
unsigned long peer_ip = 0;
x11_parse_ip(peer_addr, &peer_ip);
authdata = realauthdata;
authdatalen = 24;
memset(realauthdata, 0, authdatalen);
memcpy(realauthdata, auth_data, 8);
PUT_32BIT_MSB_FIRST(realauthdata+8, peer_ip);
PUT_16BIT_MSB_FIRST(realauthdata+12, peer_port);
t = time(NULL);
PUT_32BIT_MSB_FIRST(realauthdata+14, t);
des_encrypt_xdmauth((const unsigned char *)auth_data + 9,
realauthdata, authdatalen);
} else {
authdata = realauthdata;
authdatalen = 0;
}
authdatalen_pad = (authdatalen + 3) & ~3;
greeting_len = 12 + authnamelen_pad + authdatalen_pad;
greeting = snewn(greeting_len, unsigned char);
memset(greeting, 0, greeting_len);
greeting[0] = endian;
PUT_16BIT(endian, greeting+2, protomajor);
PUT_16BIT(endian, greeting+4, protominor);
PUT_16BIT(endian, greeting+6, authnamelen);
PUT_16BIT(endian, greeting+8, authdatalen);
memcpy(greeting+12, authname, authnamelen);
memcpy(greeting+12+authnamelen_pad, authdata, authdatalen);
smemclr(realauthdata, sizeof(realauthdata));
*outlen = greeting_len;
return greeting;
}