Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
/*
|
|
|
|
* Server side of key exchange for the SSH-2 transport protocol (RFC 4253).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
#include "ssh.h"
|
2021-04-22 16:58:40 +00:00
|
|
|
#include "bpp.h"
|
|
|
|
#include "ppl.h"
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
#include "sshcr.h"
|
2021-04-22 16:58:40 +00:00
|
|
|
#include "server.h"
|
2020-02-24 19:09:08 +00:00
|
|
|
#include "sshkeygen.h"
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
#include "storage.h"
|
2021-04-22 16:58:40 +00:00
|
|
|
#include "transport2.h"
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 13:53:41 +00:00
|
|
|
#include "mpint.h"
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
void ssh2_transport_provide_hostkeys(PacketProtocolLayer *ppl,
|
|
|
|
ssh_key *const *hostkeys, int nhostkeys)
|
|
|
|
{
|
|
|
|
struct ssh2_transport_state *s =
|
|
|
|
container_of(ppl, struct ssh2_transport_state, ppl);
|
|
|
|
|
|
|
|
s->hostkeys = hostkeys;
|
|
|
|
s->nhostkeys = nhostkeys;
|
|
|
|
}
|
|
|
|
|
|
|
|
static strbuf *finalise_and_sign_exhash(struct ssh2_transport_state *s)
|
|
|
|
{
|
|
|
|
strbuf *sb;
|
|
|
|
ssh2transport_finalise_exhash(s);
|
|
|
|
sb = strbuf_new();
|
2019-01-01 21:07:48 +00:00
|
|
|
ssh_key_sign(
|
|
|
|
s->hkey, make_ptrlen(s->exchange_hash, s->kex_alg->hash->hlen),
|
2020-11-22 08:13:21 +00:00
|
|
|
s->hkflags, BinarySink_UPCAST(sb));
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return sb;
|
|
|
|
}
|
|
|
|
|
2018-12-29 12:00:03 +00:00
|
|
|
void ssh2kex_coroutine(struct ssh2_transport_state *s, bool *aborted)
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
{
|
|
|
|
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
|
|
|
|
PktIn *pktin;
|
|
|
|
PktOut *pktout;
|
|
|
|
|
|
|
|
crBegin(s->crStateKex);
|
|
|
|
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < s->nhostkeys; i++)
|
|
|
|
if (ssh_key_alg(s->hostkeys[i]) == s->hostkey_alg) {
|
|
|
|
s->hkey = s->hostkeys[i];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
assert(s->hkey);
|
|
|
|
}
|
|
|
|
|
2020-01-21 20:16:28 +00:00
|
|
|
strbuf_clear(s->hostkeyblob);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
ssh_key_public_blob(s->hkey, BinarySink_UPCAST(s->hostkeyblob));
|
|
|
|
s->hostkeydata = ptrlen_from_strbuf(s->hostkeyblob);
|
|
|
|
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_DH) {
|
|
|
|
/*
|
|
|
|
* If we're doing Diffie-Hellman group exchange, start by
|
|
|
|
* waiting for the group request.
|
|
|
|
*/
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 20:32:31 +00:00
|
|
|
ppl_logevent("Doing Diffie-Hellman group exchange");
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGEX;
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_DH_GEX_REQUEST &&
|
|
|
|
pktin->type != SSH2_MSG_KEX_DH_GEX_REQUEST_OLD) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman group exchange "
|
|
|
|
"request, type %d (%s)", pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_DH_GEX_REQUEST_OLD) {
|
2018-10-29 19:50:29 +00:00
|
|
|
s->dh_got_size_bounds = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->dh_min_size = get_uint32(pktin);
|
|
|
|
s->pbits = get_uint32(pktin);
|
|
|
|
s->dh_max_size = get_uint32(pktin);
|
|
|
|
} else {
|
2018-10-29 19:50:29 +00:00
|
|
|
s->dh_got_size_bounds = false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->pbits = get_uint32(pktin);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is a hopeless strategy for making a secure DH
|
|
|
|
* group! It's good enough for testing a client against,
|
|
|
|
* but not for serious use.
|
|
|
|
*/
|
2020-02-29 09:10:47 +00:00
|
|
|
PrimeGenerationContext *pgc = primegen_new_context(
|
|
|
|
&primegen_probabilistic);
|
2020-02-23 15:29:40 +00:00
|
|
|
ProgressReceiver null_progress;
|
|
|
|
null_progress.vt = &null_progress_vt;
|
2020-02-29 09:10:47 +00:00
|
|
|
s->p = primegen_generate(pgc, pcs_new(s->pbits), &null_progress);
|
|
|
|
primegen_free_context(pgc);
|
|
|
|
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 13:53:41 +00:00
|
|
|
s->g = mp_from_integer(2);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->dh_ctx = dh_setup_gex(s->p, s->g);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEX_DH_GEX_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEX_DH_GEX_REPLY;
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_GROUP);
|
|
|
|
put_mp_ssh2(pktout, s->p);
|
|
|
|
put_mp_ssh2(pktout, s->g);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
} else {
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGROUP;
|
|
|
|
s->dh_ctx = dh_setup_group(s->kex_alg);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEXDH_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEXDH_REPLY;
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 20:32:31 +00:00
|
|
|
ppl_logevent("Using Diffie-Hellman with standard group \"%s\"",
|
|
|
|
s->kex_alg->groupname);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 20:32:31 +00:00
|
|
|
ppl_logevent("Doing Diffie-Hellman key exchange with hash %s",
|
2019-01-23 07:29:53 +00:00
|
|
|
ssh_hash_alg(s->exhash)->text_name);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate e for Diffie-Hellman.
|
|
|
|
*/
|
Stop using short exponents for Diffie-Hellman.
I recently encountered a paper [1] which catalogues all kinds of
things that can go wrong when one party in a discrete-log system
invents a prime and the other party chooses an exponent. In
particular, some choices of prime make it reasonable to use a short
exponent to save time, but others make that strategy very bad.
That paper is about the ElGamal encryption scheme used in OpenPGP,
which is basically integer Diffie-Hellman with one side's key being
persistent: a shared-secret integer is derived exactly as in DH, and
then it's used to communicate a message integer by simply multiplying
the shared secret by the message, mod p.
I don't _know_ that any problem of this kind arises in the SSH usage
of Diffie-Hellman: the standard integer DH groups in SSH are safe
primes, and as far as I know, the usual generation of prime moduli for
DH group exchange also picks safe primes. So the short exponents PuTTY
has been using _should_ be OK.
However, the range of imaginative other possibilities shown in that
paper make me nervous, even so! So I think I'm going to retire the
short exponent strategy, on general principles of overcaution.
This slows down 4096-bit integer DH by about a factor of 3-4 (which
would be worse if it weren't for the modpow speedup in the previous
commit). I think that's OK, because, firstly, computers are a lot
faster these days than when I originally chose to use short exponents,
and secondly, more and more implementations are now switching to
elliptic-curve DH, which is unaffected by this change (and with which
we've always been using maximum-length exponents).
[1] On the (in)security of ElGamal in OpenPGP. Luca De Feo, Bertram
Poettering, Alessandro Sorniotti. https://eprint.iacr.org/2021/923
2021-11-28 12:10:42 +00:00
|
|
|
s->e = dh_create_e(s->dh_ctx);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait to receive f.
|
|
|
|
*/
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != s->kex_init_value) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman initial packet, "
|
|
|
|
"type %d (%s)", pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->f = get_mp_ssh2(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman initial packet");
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
const char *err = dh_validate_f(s->dh_ctx, s->f);
|
|
|
|
if (err) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Diffie-Hellman initial packet "
|
|
|
|
"failed validation: %s", err);
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s->K = dh_find_K(s->dh_ctx, s->f);
|
|
|
|
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
if (s->dh_got_size_bounds)
|
|
|
|
put_uint32(s->exhash, s->dh_min_size);
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
if (s->dh_got_size_bounds)
|
|
|
|
put_uint32(s->exhash, s->dh_max_size);
|
|
|
|
put_mp_ssh2(s->exhash, s->p);
|
|
|
|
put_mp_ssh2(s->exhash, s->g);
|
|
|
|
}
|
|
|
|
put_mp_ssh2(s->exhash, s->f);
|
|
|
|
put_mp_ssh2(s->exhash, s->e);
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, s->kex_reply_value);
|
|
|
|
put_stringpl(pktout, s->hostkeydata);
|
|
|
|
put_mp_ssh2(pktout, s->e);
|
|
|
|
put_stringsb(pktout, finalise_and_sign_exhash(s));
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
dh_cleanup(s->dh_ctx);
|
|
|
|
s->dh_ctx = NULL;
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 13:53:41 +00:00
|
|
|
mp_free(s->f); s->f = NULL;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 13:53:41 +00:00
|
|
|
mp_free(s->g); s->g = NULL;
|
|
|
|
mp_free(s->p); s->p = NULL;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_ECDH) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 20:32:31 +00:00
|
|
|
ppl_logevent("Doing ECDH key exchange with curve %s and hash %s",
|
|
|
|
ssh_ecdhkex_curve_textname(s->kex_alg),
|
2019-01-23 07:29:53 +00:00
|
|
|
ssh_hash_alg(s->exhash)->text_name);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_ECDHKEX;
|
|
|
|
|
|
|
|
s->ecdh_key = ssh_ecdhkex_newkey(s->kex_alg);
|
|
|
|
if (!s->ecdh_key) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Unable to generate key for ECDH");
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_ECDH_INIT) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting ECDH initial packet, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen keydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, keydata);
|
|
|
|
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 13:53:41 +00:00
|
|
|
s->K = ssh_ecdhkex_getkey(s->ecdh_key, keydata);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
if (!get_err(pktin) && !s->K) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received invalid elliptic curve "
|
|
|
|
"point in ECDH initial packet");
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEX_ECDH_REPLY);
|
|
|
|
put_stringpl(pktout, s->hostkeydata);
|
|
|
|
{
|
|
|
|
strbuf *pubpoint = strbuf_new();
|
|
|
|
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
|
|
|
|
put_string(s->exhash, pubpoint->u, pubpoint->len);
|
|
|
|
put_stringsb(pktout, pubpoint);
|
|
|
|
}
|
|
|
|
put_stringsb(pktout, finalise_and_sign_exhash(s));
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
ssh_ecdhkex_freekey(s->ecdh_key);
|
|
|
|
s->ecdh_key = NULL;
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSS key exchange not supported in server");
|
|
|
|
} else {
|
|
|
|
assert(s->kex_alg->main_type == KEXTYPE_RSA);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 20:32:31 +00:00
|
|
|
ppl_logevent("Doing RSA key exchange with hash %s",
|
2019-01-23 07:29:53 +00:00
|
|
|
ssh_hash_alg(s->exhash)->text_name);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_RSAKEX;
|
|
|
|
|
2019-03-31 20:08:55 +00:00
|
|
|
const struct ssh_rsa_kex_extra *extra =
|
|
|
|
(const struct ssh_rsa_kex_extra *)s->kex_alg->extra;
|
|
|
|
|
|
|
|
if (s->ssc && s->ssc->rsa_kex_key) {
|
|
|
|
int klen = ssh_rsakex_klen(s->ssc->rsa_kex_key);
|
|
|
|
if (klen >= extra->minklen) {
|
|
|
|
ppl_logevent("Using configured %d-bit RSA key", klen);
|
|
|
|
s->rsa_kex_key = s->ssc->rsa_kex_key;
|
|
|
|
} else {
|
|
|
|
ppl_logevent("Configured %d-bit RSA key is too short (min %d)",
|
|
|
|
klen, extra->minklen);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!s->rsa_kex_key) {
|
|
|
|
ppl_logevent("Generating a %d-bit RSA key", extra->minklen);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
2019-09-08 19:29:00 +00:00
|
|
|
s->rsa_kex_key = snew(RSAKey);
|
2020-02-29 09:10:47 +00:00
|
|
|
|
|
|
|
PrimeGenerationContext *pgc = primegen_new_context(
|
|
|
|
&primegen_probabilistic);
|
2020-02-23 15:29:40 +00:00
|
|
|
ProgressReceiver null_progress;
|
|
|
|
null_progress.vt = &null_progress_vt;
|
RSA generation: option to generate strong primes.
A 'strong' prime, as defined by the Handbook of Applied Cryptography,
is a prime p such that each of p-1 and p+1 has a large prime factor,
and that the large factor q of p-1 is such that q-1 in turn _also_ has
a large prime factor.
HoAC says that making your RSA key using primes of this form defeats
some factoring algorithms - but there are other faster algorithms to
which it makes no difference. So this is probably not a useful
precaution in practice. However, it has been recommended in the past
by some official standards, and it's easy to implement given the new
general facility in PrimeCandidateSource that lets you ask for your
prime to satisfy an arbitrary modular congruence. (And HoAC also says
there's no particular reason _not_ to use strong primes.) So I provide
it as an option, just in case anyone wants to select it.
The change to the key generation algorithm is entirely in sshrsag.c,
and is neatly independent of the prime-generation system in use. If
you're using Maurer provable prime generation, then the known factor q
of p-1 can be used to help certify p, and the one for q-1 to help with
q in turn; if you switch to probabilistic prime generation then you
still get an RSA key with the right structure, except that every time
the definition says 'prime factor' you just append '(probably)'.
(The probabilistic version of this procedure is described as 'Gordon's
algorithm' in HoAC section 4.4.2.)
2020-03-02 06:52:09 +00:00
|
|
|
rsa_generate(s->rsa_kex_key, extra->minklen, false,
|
|
|
|
pgc, &null_progress);
|
2020-02-29 09:10:47 +00:00
|
|
|
primegen_free_context(pgc);
|
|
|
|
|
2019-09-08 19:29:00 +00:00
|
|
|
s->rsa_kex_key->comment = NULL;
|
2019-03-31 20:08:55 +00:00
|
|
|
s->rsa_kex_key_needs_freeing = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXRSA_PUBKEY);
|
|
|
|
put_stringpl(pktout, s->hostkeydata);
|
|
|
|
{
|
|
|
|
strbuf *pubblob = strbuf_new();
|
|
|
|
ssh_key_public_blob(&s->rsa_kex_key->sshk,
|
|
|
|
BinarySink_UPCAST(pubblob));
|
|
|
|
put_string(s->exhash, pubblob->u, pubblob->len);
|
|
|
|
put_stringsb(pktout, pubblob);
|
|
|
|
}
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXRSA_SECRET) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting RSA kex secret, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen encrypted_secret = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, encrypted_secret);
|
|
|
|
s->K = ssh_rsakex_decrypt(
|
2019-01-02 08:39:16 +00:00
|
|
|
s->rsa_kex_key, s->kex_alg->hash, encrypted_secret);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!s->K) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to decrypt RSA kex secret");
|
2018-12-29 12:00:03 +00:00
|
|
|
*aborted = true;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-03-31 20:08:55 +00:00
|
|
|
if (s->rsa_kex_key_needs_freeing) {
|
|
|
|
ssh_rsakex_freekey(s->rsa_kex_key);
|
|
|
|
sfree(s->rsa_kex_key);
|
|
|
|
}
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
s->rsa_kex_key = NULL;
|
2019-03-31 20:08:55 +00:00
|
|
|
s->rsa_kex_key_needs_freeing = false;
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXRSA_DONE);
|
|
|
|
put_stringsb(pktout, finalise_and_sign_exhash(s));
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
}
|
|
|
|
|
|
|
|
crFinishV;
|
|
|
|
}
|