1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/contrib/gdb.py

273 lines
9.1 KiB
Python
Raw Normal View History

import gdb
import re
import gdb.printing
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
class PuTTYMpintPrettyPrinter(gdb.printing.PrettyPrinter):
"Pretty-print PuTTY's mp_int type."
name = "mp_int"
def __init__(self, val):
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
super(PuTTYMpintPrettyPrinter, self).__init__(self.name)
self.val = val
def to_string(self):
type_BignumInt = gdb.lookup_type("BignumInt")
type_BignumIntPtr = type_BignumInt.pointer()
BIGNUM_INT_BITS = 8 * type_BignumInt.sizeof
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
array = self.val["w"]
aget = lambda i: int(array[i]) & ((1 << BIGNUM_INT_BITS)-1)
try:
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
length = int(self.val["nw"])
value = 0
for i in range(length):
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
value |= aget(i) << (BIGNUM_INT_BITS * i)
return "mp_int({:#x})".format(value)
except gdb.MemoryError:
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
address = int(self.val)
if address == 0:
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
return "mp_int(NULL)".format(address)
return "mp_int(invalid @ {:#x})".format(address)
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
class PuTTYPrinterSelector(gdb.printing.PrettyPrinter):
def __init__(self):
super(PuTTYPrinterSelector, self).__init__("PuTTY")
def __call__(self, val):
if str(val.type) == "mp_int *":
return PuTTYMpintPrettyPrinter(val)
return None
Complete rewrite of PuTTY's bignum library. The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
2018-12-31 13:53:41 +00:00
gdb.printing.register_pretty_printer(None, PuTTYPrinterSelector())
class MemDumpCommand(gdb.Command):
"""Print a hex+ASCII dump of object EXP.
EXP must be an expression whose value resides in memory. The
contents of the memory it occupies are printed in a standard hex
dump format, with each line showing an offset relative to the
address of EXP, then the hex byte values of the memory at that
offset, and then a translation into ASCII of the same bytes (with
values outside the printable ASCII range translated as '.').
To dump a number of bytes from a particular address, it's useful
to use the gdb expression extensions {TYPE} and @LENGTH. For
example, if 'ptr' and 'len' are variables giving an address and a
length in bytes, then the command
memdump {char} ptr @ len
will dump the range of memory described by those two variables."""
def __init__(self):
super(MemDumpCommand, self).__init__(
"memdump", gdb.COMMAND_DATA, gdb.COMPLETE_EXPRESSION)
def invoke(self, cmdline, from_tty):
expr = gdb.parse_and_eval(cmdline)
try:
start, size = int(expr.address), expr.type.sizeof
except gdb.error as e:
raise gdb.GdbError(str(e))
except (TypeError, AttributeError):
raise gdb.GdbError("expression must identify an object in memory")
return
width = 16
line_ptr_type = gdb.lookup_type(
"unsigned char").const().array(width).pointer()
dumpaddr = 0
while size > 0:
line = gdb.Value(start).cast(line_ptr_type).dereference()
thislinelen = min(size, width)
start += thislinelen
size -= thislinelen
dumpline = [None, " "] + [" "] * width + [" "] + [""] * width
dumpline[0] = "{:08x}".format(dumpaddr)
dumpaddr += thislinelen
for i in range(thislinelen):
ch = int(line[i]) & 0xFF
dumpline[2+i] = " {:02x}".format(ch)
dumpline[3+width+i] = chr(ch) if 0x20 <= ch < 0x7F else "."
sys.stdout.write("".join(dumpline) + "\n")
MemDumpCommand()
class ContainerOf(gdb.Function):
"""Implement the container_of macro from PuTTY's defs.h.
Arguments are an object or pointer to object; a type to convert it
to; and, optionally the name of the structure member in the
destination type that the pointer points to. (If the member name
is not provided, then the default is whichever member of the
destination structure type has the same type as the input object,
provided there's only one.)
Due to limitations of GDB's convenience function syntax, the type
and member names must be provided as strings.
"""
def __init__(self):
super(ContainerOf, self).__init__("container_of")
def match_type(self, obj, typ):
if obj.type == typ:
return obj
try:
ref = obj.referenced_value()
if ref.type == typ:
return ref
except gdb.error:
pass
return None
def invoke(self, obj, dest_type_name_val, member_name_val=None):
try:
dest_type_name = dest_type_name_val.string()
except gdb.error:
raise gdb.GdbError("destination type name must be a string")
try:
dest_type = gdb.lookup_type(dest_type_name)
except gdb.error:
raise gdb.GdbError("no such type '{dt}'".format(dt=dest_type_name))
if member_name_val is not None:
try:
member_name = member_name_val.string()
except gdb.error:
raise gdb.GdbError("member name must be a string")
for field in dest_type.fields():
if field.name == member_name:
break
else:
raise gdb.GdbError(
"type '{dt}' has no member called '{memb}'"
.format(dt=dest_type_name, memb=member_name))
match_obj = self.match_type(obj, field.type)
else:
matches = []
for field in dest_type.fields():
this_match_obj = self.match_type(obj, field.type)
if this_match_obj is not None:
match_obj = this_match_obj
matches.append(field)
if len(matches) == 0:
raise gdb.GdbError(
"type '{dt}' has no member matching type '{ot}'"
.format(dt=dest_type_name, ot=obj.type))
if len(matches) > 1:
raise gdb.GdbError(
"type '{dt}' has multiple members matching type '{ot}'"
" ({memberlist})"
.format(dt=dest_type_name, ot=obj.type,
memberlist=", ".join(f.name for f in matches)))
field = matches[0]
if field.bitpos % 8 != 0:
raise gdb.GdbError(
"offset of field '{memb}' is a fractional number of bytes"
.format(dt=dest_type_name, memb=member_name))
offset = field.bitpos // 8
if match_obj.type != field.type:
raise gdb.GdbError(
"value to convert does not have type '{ft}'"
.format(ft=field.type))
try:
addr = int(match_obj.address)
except gdb.error:
raise gdb.GdbError("cannot take address of value to convert")
return gdb.Value(addr - offset).cast(dest_type.pointer())
ContainerOf()
class List234(gdb.Function):
"""List the elements currently stored in a tree234.
Arguments are a tree234, and optionally a value type. If no value
type is given, the result is a list of the raw void * pointers
stored in the tree. Othewise, each one is cast to a pointer to the
value type and dereferenced.
Due to limitations of GDB's convenience function syntax, the value
type must be provided as a string.
"""
def __init__(self):
super(List234, self).__init__("list234")
def add_elements(self, node, destlist):
kids = node["kids"]
elems = node["elems"]
for i in range(4):
if int(kids[i]) != 0:
add_elements(self, kids[i].dereference(), destlist)
if i < 3 and int(elems[i]) != 0:
destlist.append(elems[i])
def invoke(self, tree, value_type_name_val=None):
if value_type_name_val is not None:
try:
value_type_name = value_type_name_val.string()
except gdb.error:
raise gdb.GdbError("value type name must be a string")
try:
value_type = gdb.lookup_type(value_type_name)
except gdb.error:
raise gdb.GdbError("no such type '{dt}'"
.format(dt=value_type_name))
else:
value_type = None
try:
tree = tree.dereference()
except gdb.error:
pass
if tree.type == gdb.lookup_type("tree234"):
tree = tree["root"].dereference()
if tree.type != gdb.lookup_type("node234"):
raise gdb.GdbError(
"input value is not a tree234")
if int(tree.address) == 0:
# If you try to return {} for the empty list, gdb gives
# the cryptic error "bad array bounds (0, -1)"! We return
# NULL as the best approximation to 'sorry, list is
# empty'.
return gdb.parse_and_eval("((void *)0)")
elems = []
self.add_elements(tree, elems)
if value_type is not None:
value_ptr_type_name = str(value_type.pointer())
elem_fmt = lambda p: "*({}){}".format(value_ptr_type_name, int(p))
else:
elem_fmt = lambda p: "(void *){}".format(int(p))
elems_str = "{" + ",".join(elem_fmt(elem) for elem in elems) + "}"
return gdb.parse_and_eval(elems_str)
List234()