1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/unix/console.c

544 lines
15 KiB
C
Raw Normal View History

/*
* uxcons.c: various interactive-prompt routines shared between the
* Unix console PuTTY tools
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include "putty.h"
#include "storage.h"
#include "ssh.h"
#include "console.h"
static struct termios orig_termios_stderr;
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
static bool stderr_is_a_tty;
void stderr_tty_init()
{
/* Ensure that if stderr is a tty, we can get it back to a sane state. */
if (isatty(STDERR_FILENO)) {
stderr_is_a_tty = true;
tcgetattr(STDERR_FILENO, &orig_termios_stderr);
}
}
void premsg(struct termios *cf)
{
if (stderr_is_a_tty) {
tcgetattr(STDERR_FILENO, cf);
tcsetattr(STDERR_FILENO, TCSADRAIN, &orig_termios_stderr);
}
}
void postmsg(struct termios *cf)
{
if (stderr_is_a_tty)
tcsetattr(STDERR_FILENO, TCSADRAIN, cf);
}
void cleanup_exit(int code)
{
/*
* Clean up.
*/
sk_cleanup();
random_save_seed();
exit(code);
}
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
void console_print_error_msg(const char *prefix, const char *msg)
{
struct termios cf;
premsg(&cf);
fputs(prefix, stderr);
fputs(": ", stderr);
fputs(msg, stderr);
fputc('\n', stderr);
fflush(stderr);
postmsg(&cf);
}
/*
* Wrapper around Unix read(2), suitable for use on a file descriptor
* that's been set into nonblocking mode. Handles EAGAIN/EWOULDBLOCK
* by means of doing a one-fd poll and then trying again; all other
* errors (including errors from poll) are returned to the caller.
*/
static int block_and_read(int fd, void *buf, size_t len)
{
int ret;
pollwrapper *pw = pollwrap_new();
while ((ret = read(fd, buf, len)) < 0 && (
#ifdef EAGAIN
(errno == EAGAIN) ||
#endif
#ifdef EWOULDBLOCK
(errno == EWOULDBLOCK) ||
#endif
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
false)) {
pollwrap_clear(pw);
pollwrap_add_fd_rwx(pw, fd, SELECT_R);
do {
ret = pollwrap_poll_endless(pw);
} while (ret < 0 && errno == EINTR);
assert(ret != 0);
if (ret < 0) {
pollwrap_free(pw);
return ret;
}
assert(pollwrap_check_fd_rwx(pw, fd, SELECT_R));
}
pollwrap_free(pw);
return ret;
}
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
int console_verify_ssh_host_key(
Seat *seat, const char *host, int port, const char *keytype,
char *keystr, const char *keydisp, char **fingerprints,
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
void (*callback)(void *ctx, int result), void *ctx)
{
int ret;
char line[32];
struct termios cf;
char *common;
const char *intro, *prompt;
/*
* Verify the key.
*/
ret = verify_host_key(host, port, keytype, keystr);
if (ret == 0) /* success - key matched OK */
return 1;
FingerprintType fptype_default =
ssh2_pick_default_fingerprint(fingerprints);
if (ret == 2) { /* key was different */
common = hk_wrongmsg_common(keytype, fingerprints[fptype_default]);
intro = hk_wrongmsg_interactive_intro;
prompt = hk_wrongmsg_interactive_prompt;
} else { /* key was absent */
common = hk_absentmsg_common(keytype, fingerprints[fptype_default]);
intro = hk_absentmsg_interactive_intro;
prompt = hk_absentmsg_interactive_prompt;
}
premsg(&cf);
fputs(common, stderr);
sfree(common);
if (console_batch_mode) {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
fputs(intro, stderr);
fflush(stderr);
while (true) {
fputs(prompt, stderr);
fflush(stderr);
struct termios oldmode, newmode;
tcgetattr(0, &oldmode);
newmode = oldmode;
newmode.c_lflag |= ECHO | ISIG | ICANON;
tcsetattr(0, TCSANOW, &newmode);
line[0] = '\0';
if (block_and_read(0, line, sizeof(line) - 1) <= 0)
/* handled below */;
tcsetattr(0, TCSANOW, &oldmode);
if (line[0] == 'i' || line[0] == 'I') {
fprintf(stderr, "Full public key:\n%s\n", keydisp);
if (fingerprints[SSH_FPTYPE_SHA256])
fprintf(stderr, "SHA256 key fingerprint:\n%s\n",
fingerprints[SSH_FPTYPE_SHA256]);
if (fingerprints[SSH_FPTYPE_MD5])
fprintf(stderr, "MD5 key fingerprint:\n%s\n",
fingerprints[SSH_FPTYPE_MD5]);
} else {
break;
}
}
/* In case of misplaced reflexes from another program, also recognise 'q'
* as 'abandon connection rather than trust this key' */
if (line[0] != '\0' && line[0] != '\r' && line[0] != '\n' &&
line[0] != 'q' && line[0] != 'Q') {
if (line[0] == 'y' || line[0] == 'Y')
store_host_key(host, port, keytype, keystr);
postmsg(&cf);
return 1;
} else {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
}
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
int console_confirm_weak_crypto_primitive(
Seat *seat, const char *algtype, const char *algname,
void (*callback)(void *ctx, int result), void *ctx)
{
char line[32];
struct termios cf;
premsg(&cf);
fprintf(stderr, weakcrypto_msg_common_fmt, algtype, algname);
if (console_batch_mode) {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
fputs(console_continue_prompt, stderr);
fflush(stderr);
{
struct termios oldmode, newmode;
tcgetattr(0, &oldmode);
newmode = oldmode;
newmode.c_lflag |= ECHO | ISIG | ICANON;
tcsetattr(0, TCSANOW, &newmode);
line[0] = '\0';
if (block_and_read(0, line, sizeof(line) - 1) <= 0)
/* handled below */;
tcsetattr(0, TCSANOW, &oldmode);
}
if (line[0] == 'y' || line[0] == 'Y') {
postmsg(&cf);
return 1;
} else {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
}
New abstraction 'Seat', to pass to backends. This is a new vtable-based abstraction which is passed to a backend in place of Frontend, and it implements only the subset of the Frontend functions needed by a backend. (Many other Frontend functions still exist, notably the wide range of things called by terminal.c providing platform-independent operations on the GUI terminal window.) The purpose of making it a vtable is that this opens up the possibility of creating a backend as an internal implementation detail of some other activity, by providing just that one backend with a custom Seat that implements the methods differently. For example, this refactoring should make it feasible to directly implement an SSH proxy type, aka the 'jump host' feature supported by OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP mode, and then expose the main channel of that as the Socket for the primary connection'. (Which of course you can already do by spawning 'plink -nc' as a separate proxy process, but this would permit it in the _same_ process without anything getting confused.) I've centralised a full set of stub methods in misc.c for the new abstraction, which allows me to get rid of several annoying stubs in the previous code. Also, while I'm here, I've moved a lot of duplicated modalfatalbox() type functions from application main program files into wincons.c / uxcons.c, which I think saves duplication overall. (A minor visible effect is that the prefixes on those console-based fatal error messages will now be more consistent between applications.)
2018-10-11 18:58:42 +00:00
int console_confirm_weak_cached_hostkey(
Seat *seat, const char *algname, const char *betteralgs,
void (*callback)(void *ctx, int result), void *ctx)
{
char line[32];
struct termios cf;
premsg(&cf);
fprintf(stderr, weakhk_msg_common_fmt, algname, betteralgs);
if (console_batch_mode) {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
fputs(console_continue_prompt, stderr);
fflush(stderr);
{
struct termios oldmode, newmode;
tcgetattr(0, &oldmode);
newmode = oldmode;
newmode.c_lflag |= ECHO | ISIG | ICANON;
tcsetattr(0, TCSANOW, &newmode);
line[0] = '\0';
if (block_and_read(0, line, sizeof(line) - 1) <= 0)
/* handled below */;
tcsetattr(0, TCSANOW, &oldmode);
}
if (line[0] == 'y' || line[0] == 'Y') {
postmsg(&cf);
return 1;
} else {
fputs(console_abandoned_msg, stderr);
postmsg(&cf);
return 0;
}
}
/*
* Ask whether to wipe a session log file before writing to it.
* Returns 2 for wipe, 1 for append, 0 for cancel (don't log).
*/
Remove FLAG_VERBOSE. The global 'int flags' has always been an ugly feature of this code base, and I suddenly thought that perhaps it's time to start throwing it out, one flag at a time, until it's totally unused. My first target is FLAG_VERBOSE. This was usually set by cmdline.c when it saw a -v option on the program's command line, except that GUI PuTTY itself sets it unconditionally on startup. And then various bits of the code would check it in order to decide whether to print a given message. In the current system of front-end abstraction traits, there's no _one_ place that I can move it to. But there are two: every place that checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So now each of those traits has a query method for 'do I want verbose messages?'. A good effect of this is that subsidiary Seats, like the ones used in Uppity for the main SSH server module itself and the server end of shell channels, now get to have their own verbosity setting instead of inheriting the one global one. In fact I don't expect any code using those Seats to be generating any messages at all, but if that changes later, we'll have a way to control it. (Who knows, perhaps logging in Uppity might become a thing.) As part of this cleanup, I've added a new flag to cmdline_tooltype, called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools now set that, and it has the effect of making cmdline.c disallow -v completely. So where 'putty -v' would previously have been silently ignored ("I was already verbose"), it's now an error, reminding you that that option doesn't actually do anything. Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c (with identical definitions) has had to move into a new file of its own, because now it has to ask cmdline.c for the verbosity setting as well as asking console.c for the rest of its methods. So there's a new file clicons.c which can only be included by programs that link against both cmdline.c _and_ one of the *cons.c, and I've renamed the logpolicy to reflect that.
2020-01-30 06:40:21 +00:00
int console_askappend(LogPolicy *lp, Filename *filename,
void (*callback)(void *ctx, int result), void *ctx)
{
static const char msgtemplate[] =
"The session log file \"%.*s\" already exists.\n"
"You can overwrite it with a new session log,\n"
"append your session log to the end of it,\n"
"or disable session logging for this session.\n"
"Enter \"y\" to wipe the file, \"n\" to append to it,\n"
"or just press Return to disable logging.\n"
"Wipe the log file? (y/n, Return cancels logging) ";
static const char msgtemplate_batch[] =
"The session log file \"%.*s\" already exists.\n"
"Logging will not be enabled.\n";
char line[32];
struct termios cf;
premsg(&cf);
if (console_batch_mode) {
fprintf(stderr, msgtemplate_batch, FILENAME_MAX, filename->path);
fflush(stderr);
return 0;
}
fprintf(stderr, msgtemplate, FILENAME_MAX, filename->path);
fflush(stderr);
{
struct termios oldmode, newmode;
tcgetattr(0, &oldmode);
newmode = oldmode;
newmode.c_lflag |= ECHO | ISIG | ICANON;
tcsetattr(0, TCSANOW, &newmode);
line[0] = '\0';
if (block_and_read(0, line, sizeof(line) - 1) <= 0)
/* handled below */;
tcsetattr(0, TCSANOW, &oldmode);
}
postmsg(&cf);
if (line[0] == 'y' || line[0] == 'Y')
return 2;
else if (line[0] == 'n' || line[0] == 'N')
return 1;
else
return 0;
}
bool console_antispoof_prompt = true;
void console_set_trust_status(Seat *seat, bool trusted)
{
/* Do nothing in response to a change of trust status, because
* there's nothing we can do in a console environment. However,
* the query function below will make a fiddly decision about
* whether to tell the backend to enable fallback handling. */
}
bool console_can_set_trust_status(Seat *seat)
{
if (console_batch_mode || !is_interactive() || !console_antispoof_prompt) {
/*
* In batch mode, we don't need to worry about the server
* mimicking our interactive authentication, because the user
* already knows not to expect any.
*
* If standard input isn't connected to a terminal, likewise,
* because even if the server did send a spoof authentication
* prompt, the user couldn't respond to it via the terminal
* anyway.
*
* We also return true without enabling any defences if the
* user has purposely disabled the antispoof prompt.
*/
return true;
}
return false;
}
/*
* Warn about the obsolescent key file format.
*
* Uniquely among these functions, this one does _not_ expect a
* frontend handle. This means that if PuTTY is ported to a
* platform which requires frontend handles, this function will be
* an anomaly. Fortunately, the problem it addresses will not have
* been present on that platform, so it can plausibly be
* implemented as an empty function.
*/
void old_keyfile_warning(void)
{
static const char message[] =
"You are loading an SSH-2 private key which has an\n"
"old version of the file format. This means your key\n"
"file is not fully tamperproof. Future versions of\n"
"PuTTY may stop supporting this private key format,\n"
"so we recommend you convert your key to the new\n"
"format.\n"
"\n"
"Once the key is loaded into PuTTYgen, you can perform\n"
"this conversion simply by saving it again.\n";
struct termios cf;
premsg(&cf);
fputs(message, stderr);
postmsg(&cf);
}
Remove FLAG_VERBOSE. The global 'int flags' has always been an ugly feature of this code base, and I suddenly thought that perhaps it's time to start throwing it out, one flag at a time, until it's totally unused. My first target is FLAG_VERBOSE. This was usually set by cmdline.c when it saw a -v option on the program's command line, except that GUI PuTTY itself sets it unconditionally on startup. And then various bits of the code would check it in order to decide whether to print a given message. In the current system of front-end abstraction traits, there's no _one_ place that I can move it to. But there are two: every place that checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So now each of those traits has a query method for 'do I want verbose messages?'. A good effect of this is that subsidiary Seats, like the ones used in Uppity for the main SSH server module itself and the server end of shell channels, now get to have their own verbosity setting instead of inheriting the one global one. In fact I don't expect any code using those Seats to be generating any messages at all, but if that changes later, we'll have a way to control it. (Who knows, perhaps logging in Uppity might become a thing.) As part of this cleanup, I've added a new flag to cmdline_tooltype, called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools now set that, and it has the effect of making cmdline.c disallow -v completely. So where 'putty -v' would previously have been silently ignored ("I was already verbose"), it's now an error, reminding you that that option doesn't actually do anything. Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c (with identical definitions) has had to move into a new file of its own, because now it has to ask cmdline.c for the verbosity setting as well as asking console.c for the rest of its methods. So there's a new file clicons.c which can only be included by programs that link against both cmdline.c _and_ one of the *cons.c, and I've renamed the logpolicy to reflect that.
2020-01-30 06:40:21 +00:00
void console_logging_error(LogPolicy *lp, const char *string)
{
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
/* Errors setting up logging are considered important, so they're
* displayed to standard error even when not in verbose mode */
struct termios cf;
premsg(&cf);
fprintf(stderr, "%s\n", string);
fflush(stderr);
postmsg(&cf);
}
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
Remove FLAG_VERBOSE. The global 'int flags' has always been an ugly feature of this code base, and I suddenly thought that perhaps it's time to start throwing it out, one flag at a time, until it's totally unused. My first target is FLAG_VERBOSE. This was usually set by cmdline.c when it saw a -v option on the program's command line, except that GUI PuTTY itself sets it unconditionally on startup. And then various bits of the code would check it in order to decide whether to print a given message. In the current system of front-end abstraction traits, there's no _one_ place that I can move it to. But there are two: every place that checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So now each of those traits has a query method for 'do I want verbose messages?'. A good effect of this is that subsidiary Seats, like the ones used in Uppity for the main SSH server module itself and the server end of shell channels, now get to have their own verbosity setting instead of inheriting the one global one. In fact I don't expect any code using those Seats to be generating any messages at all, but if that changes later, we'll have a way to control it. (Who knows, perhaps logging in Uppity might become a thing.) As part of this cleanup, I've added a new flag to cmdline_tooltype, called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools now set that, and it has the effect of making cmdline.c disallow -v completely. So where 'putty -v' would previously have been silently ignored ("I was already verbose"), it's now an error, reminding you that that option doesn't actually do anything. Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c (with identical definitions) has had to move into a new file of its own, because now it has to ask cmdline.c for the verbosity setting as well as asking console.c for the rest of its methods. So there's a new file clicons.c which can only be included by programs that link against both cmdline.c _and_ one of the *cons.c, and I've renamed the logpolicy to reflect that.
2020-01-30 06:40:21 +00:00
void console_eventlog(LogPolicy *lp, const char *string)
{
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
/* Ordinary Event Log entries are displayed in the same way as
* logging errors, but only in verbose mode */
Remove FLAG_VERBOSE. The global 'int flags' has always been an ugly feature of this code base, and I suddenly thought that perhaps it's time to start throwing it out, one flag at a time, until it's totally unused. My first target is FLAG_VERBOSE. This was usually set by cmdline.c when it saw a -v option on the program's command line, except that GUI PuTTY itself sets it unconditionally on startup. And then various bits of the code would check it in order to decide whether to print a given message. In the current system of front-end abstraction traits, there's no _one_ place that I can move it to. But there are two: every place that checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So now each of those traits has a query method for 'do I want verbose messages?'. A good effect of this is that subsidiary Seats, like the ones used in Uppity for the main SSH server module itself and the server end of shell channels, now get to have their own verbosity setting instead of inheriting the one global one. In fact I don't expect any code using those Seats to be generating any messages at all, but if that changes later, we'll have a way to control it. (Who knows, perhaps logging in Uppity might become a thing.) As part of this cleanup, I've added a new flag to cmdline_tooltype, called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools now set that, and it has the effect of making cmdline.c disallow -v completely. So where 'putty -v' would previously have been silently ignored ("I was already verbose"), it's now an error, reminding you that that option doesn't actually do anything. Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c (with identical definitions) has had to move into a new file of its own, because now it has to ask cmdline.c for the verbosity setting as well as asking console.c for the rest of its methods. So there's a new file clicons.c which can only be included by programs that link against both cmdline.c _and_ one of the *cons.c, and I've renamed the logpolicy to reflect that.
2020-01-30 06:40:21 +00:00
if (lp_verbose(lp))
Refactor the LogContext type. LogContext is now the owner of the logevent() function that back ends and so forth are constantly calling. Previously, logevent was owned by the Frontend, which would store the message into its list for the GUI Event Log dialog (or print it to standard error, or whatever) and then pass it _back_ to LogContext to write to the currently open log file. Now it's the other way round: LogContext gets the message from the back end first, writes it to its log file if it feels so inclined, and communicates it back to the front end. This means that lots of parts of the back end system no longer need to have a pointer to a full-on Frontend; the only thing they needed it for was logging, so now they just have a LogContext (which many of them had to have anyway, e.g. for logging SSH packets or session traffic). LogContext itself also doesn't get a full Frontend pointer any more: it now talks back to the front end via a little vtable of its own called LogPolicy, which contains the method that passes Event Log entries through, the old askappend() function that decides whether to truncate a pre-existing log file, and an emergency function for printing an especially prominent message if the log file can't be created. One minor nice effect of this is that console and GUI apps can implement that last function subtly differently, so that Unix console apps can write it with a plain \n instead of the \r\n (harmless but inelegant) that the old centralised implementation generated. One other consequence of this is that the LogContext has to be provided to backend_init() so that it's available to backends from the instant of creation, rather than being provided via a separate API call a couple of function calls later, because backends have typically started doing things that need logging (like making network connections) before the call to backend_provide_logctx. Fortunately, there's no case in the whole code base where we don't already have logctx by the time we make a backend (so I don't actually remember why I ever delayed providing one). So that shortens the backend API by one function, which is always nice. While I'm tidying up, I've also moved the printf-style logeventf() and the handy logevent_and_free() into logging.c, instead of having copies of them scattered around other places. This has also let me remove some stub functions from a couple of outlying applications like Pageant. Finally, I've removed the pointless "_tag" at the end of LogContext's official struct name.
2018-10-10 18:26:18 +00:00
console_logging_error(lp, string);
}
StripCtrlChars *console_stripctrl_new(
Seat *seat, BinarySink *bs_out, SeatInteractionContext sic)
{
return stripctrl_new(bs_out, false, 0);
}
/*
* Special functions to read and print to the console for password
* prompts and the like. Uses /dev/tty or stdin/stderr, in that order
* of preference; also sanitises escape sequences out of the text, on
* the basis that it might have been sent by a hostile SSH server
* doing malicious keyboard-interactive.
*/
static void console_open(FILE **outfp, int *infd)
{
int fd;
if ((fd = open("/dev/tty", O_RDWR)) >= 0) {
*infd = fd;
*outfp = fdopen(*infd, "w");
} else {
*infd = 0;
*outfp = stderr;
}
}
static void console_close(FILE *outfp, int infd)
{
if (outfp != stderr)
fclose(outfp); /* will automatically close infd too */
}
static void console_write(FILE *outfp, ptrlen data)
{
fwrite(data.ptr, 1, data.len, outfp);
fflush(outfp);
}
int console_get_userpass_input(prompts_t *p)
{
size_t curr_prompt;
FILE *outfp = NULL;
int infd;
/*
* Zero all the results, in case we abort half-way through.
*/
{
int i;
for (i = 0; i < p->n_prompts; i++)
prompt_set_result(p->prompts[i], "");
}
if (p->n_prompts && console_batch_mode)
return 0;
console_open(&outfp, &infd);
/*
* Preamble.
*/
/* We only print the `name' caption if we have to... */
if (p->name_reqd && p->name) {
ptrlen plname = ptrlen_from_asciz(p->name);
console_write(outfp, plname);
if (!ptrlen_endswith(plname, PTRLEN_LITERAL("\n"), NULL))
console_write(outfp, PTRLEN_LITERAL("\n"));
}
/* ...but we always print any `instruction'. */
if (p->instruction) {
ptrlen plinst = ptrlen_from_asciz(p->instruction);
console_write(outfp, plinst);
if (!ptrlen_endswith(plinst, PTRLEN_LITERAL("\n"), NULL))
console_write(outfp, PTRLEN_LITERAL("\n"));
}
for (curr_prompt = 0; curr_prompt < p->n_prompts; curr_prompt++) {
struct termios oldmode, newmode;
prompt_t *pr = p->prompts[curr_prompt];
tcgetattr(infd, &oldmode);
newmode = oldmode;
newmode.c_lflag |= ISIG | ICANON;
if (!pr->echo)
newmode.c_lflag &= ~ECHO;
else
newmode.c_lflag |= ECHO;
tcsetattr(infd, TCSANOW, &newmode);
console_write(outfp, ptrlen_from_asciz(pr->prompt));
bool failed = false;
while (1) {
size_t toread = 65536;
size_t prev_result_len = pr->result->len;
void *ptr = strbuf_append(pr->result, toread);
int ret = read(infd, ptr, toread);
if (ret <= 0) {
failed = true;
break;
}
strbuf_shrink_to(pr->result, prev_result_len + ret);
if (strbuf_chomp(pr->result, '\n'))
break;
}
tcsetattr(infd, TCSANOW, &oldmode);
if (!pr->echo)
console_write(outfp, PTRLEN_LITERAL("\n"));
if (failed) {
console_close(outfp, infd);
return 0; /* failure due to read error */
}
}
console_close(outfp, infd);
return 1; /* success */
}
Convert a lot of 'int' variables to 'bool'. My normal habit these days, in new code, is to treat int and bool as _almost_ completely separate types. I'm still willing to use C's implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine, no need to spell it out as blob.len != 0), but generally, if a variable is going to be conceptually a boolean, I like to declare it bool and assign to it using 'true' or 'false' rather than 0 or 1. PuTTY is an exception, because it predates the C99 bool, and I've stuck to its existing coding style even when adding new code to it. But it's been annoying me more and more, so now that I've decided C99 bool is an acceptable thing to require from our toolchain in the first place, here's a quite thorough trawl through the source doing 'boolification'. Many variables and function parameters are now typed as bool rather than int; many assignments of 0 or 1 to those variables are now spelled 'true' or 'false'. I managed this thorough conversion with the help of a custom clang plugin that I wrote to trawl the AST and apply heuristics to point out where things might want changing. So I've even managed to do a decent job on parts of the code I haven't looked at in years! To make the plugin's work easier, I pushed platform front ends generally in the direction of using standard 'bool' in preference to platform-specific boolean types like Windows BOOL or GTK's gboolean; I've left the platform booleans in places they _have_ to be for the platform APIs to work right, but variables only used by my own code have been converted wherever I found them. In a few places there are int values that look very like booleans in _most_ of the places they're used, but have a rarely-used third value, or a distinction between different nonzero values that most users don't care about. In these cases, I've _removed_ uses of 'true' and 'false' for the return values, to emphasise that there's something more subtle going on than a simple boolean answer: - the 'multisel' field in dialog.h's list box structure, for which the GTK front end in particular recognises a difference between 1 and 2 but nearly everything else treats as boolean - the 'urgent' parameter to plug_receive, where 1 vs 2 tells you something about the specific location of the urgent pointer, but most clients only care about 0 vs 'something nonzero' - the return value of wc_match, where -1 indicates a syntax error in the wildcard. - the return values from SSH-1 RSA-key loading functions, which use -1 for 'wrong passphrase' and 0 for all other failures (so any caller which already knows it's not loading an _encrypted private_ key can treat them as boolean) - term->esc_query, and the 'query' parameter in toggle_mode in terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h, but can also hold -1 for some other intervening character that we don't support. In a few places there's an integer that I haven't turned into a bool even though it really _can_ only take values 0 or 1 (and, as above, tried to make the call sites consistent in not calling those values true and false), on the grounds that I thought it would make it more confusing to imply that the 0 value was in some sense 'negative' or bad and the 1 positive or good: - the return value of plug_accepting uses the POSIXish convention of 0=success and nonzero=error; I think if I made it bool then I'd also want to reverse its sense, and that's a job for a separate piece of work. - the 'screen' parameter to lineptr() in terminal.c, where 0 and 1 represent the default and alternate screens. There's no obvious reason why one of those should be considered 'true' or 'positive' or 'success' - they're just indices - so I've left it as int. ssh_scp_recv had particularly confusing semantics for its previous int return value: its call sites used '<= 0' to check for error, but it never actually returned a negative number, just 0 or 1. Now the function and its call sites agree that it's a bool. In a couple of places I've renamed variables called 'ret', because I don't like that name any more - it's unclear whether it means the return value (in preparation) for the _containing_ function or the return value received from a subroutine call, and occasionally I've accidentally used the same variable for both and introduced a bug. So where one of those got in my way, I've renamed it to 'toret' or 'retd' (the latter short for 'returned') in line with my usual modern practice, but I haven't done a thorough job of finding all of them. Finally, one amusing side effect of doing this is that I've had to separate quite a few chained assignments. It used to be perfectly fine to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a the 'true' defined by stdbool.h, that idiom provokes a warning from gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
bool is_interactive(void)
{
return isatty(0);
}
/*
* X11-forwarding-related things suitable for console.
*/
char *platform_get_x_display(void) {
return dupstr(getenv("DISPLAY"));
}