1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/import.c

2703 lines
79 KiB
C
Raw Normal View History

/*
* Code for PuTTY to import and export private key files in other
* SSH clients' formats.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <ctype.h>
#include "putty.h"
#include "ssh.h"
#include "misc.h"
int openssh_pem_encrypted(const Filename *filename);
int openssh_new_encrypted(const Filename *filename);
struct ssh2_userkey *openssh_pem_read(const Filename *filename,
char *passphrase,
const char **errmsg_p);
struct ssh2_userkey *openssh_new_read(const Filename *filename,
char *passphrase,
const char **errmsg_p);
int openssh_auto_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase);
int openssh_pem_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase);
int openssh_new_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase);
int sshcom_encrypted(const Filename *filename, char **comment);
struct ssh2_userkey *sshcom_read(const Filename *filename, char *passphrase,
const char **errmsg_p);
int sshcom_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase);
/*
* Given a key type, determine whether we know how to import it.
*/
int import_possible(int type)
{
if (type == SSH_KEYTYPE_OPENSSH_PEM)
return 1;
if (type == SSH_KEYTYPE_OPENSSH_NEW)
return 1;
if (type == SSH_KEYTYPE_SSHCOM)
return 1;
return 0;
}
/*
* Given a key type, determine what native key type
* (SSH_KEYTYPE_SSH1 or SSH_KEYTYPE_SSH2) it will come out as once
* we've imported it.
*/
int import_target_type(int type)
{
/*
* There are no known foreign SSH-1 key formats.
*/
return SSH_KEYTYPE_SSH2;
}
/*
* Determine whether a foreign key is encrypted.
*/
int import_encrypted(const Filename *filename, int type, char **comment)
{
if (type == SSH_KEYTYPE_OPENSSH_PEM) {
/* OpenSSH PEM format doesn't contain a key comment at all */
*comment = dupstr(filename_to_str(filename));
return openssh_pem_encrypted(filename);
} else if (type == SSH_KEYTYPE_OPENSSH_NEW) {
/* OpenSSH new format does, but it's inside the encrypted
* section for some reason */
*comment = dupstr(filename_to_str(filename));
return openssh_new_encrypted(filename);
} else if (type == SSH_KEYTYPE_SSHCOM) {
return sshcom_encrypted(filename, comment);
}
return 0;
}
/*
* Import an SSH-1 key.
*/
int import_ssh1(const Filename *filename, int type,
struct RSAKey *key, char *passphrase, const char **errmsg_p)
{
return 0;
}
/*
* Import an SSH-2 key.
*/
struct ssh2_userkey *import_ssh2(const Filename *filename, int type,
char *passphrase, const char **errmsg_p)
{
if (type == SSH_KEYTYPE_OPENSSH_PEM)
return openssh_pem_read(filename, passphrase, errmsg_p);
else if (type == SSH_KEYTYPE_OPENSSH_NEW)
return openssh_new_read(filename, passphrase, errmsg_p);
if (type == SSH_KEYTYPE_SSHCOM)
return sshcom_read(filename, passphrase, errmsg_p);
return NULL;
}
/*
* Export an SSH-1 key.
*/
int export_ssh1(const Filename *filename, int type, struct RSAKey *key,
char *passphrase)
{
return 0;
}
/*
* Export an SSH-2 key.
*/
int export_ssh2(const Filename *filename, int type,
struct ssh2_userkey *key, char *passphrase)
{
if (type == SSH_KEYTYPE_OPENSSH_AUTO)
return openssh_auto_write(filename, key, passphrase);
if (type == SSH_KEYTYPE_OPENSSH_NEW)
return openssh_new_write(filename, key, passphrase);
if (type == SSH_KEYTYPE_SSHCOM)
return sshcom_write(filename, key, passphrase);
return 0;
}
/*
* Strip trailing CRs and LFs at the end of a line of text.
*/
void strip_crlf(char *str)
{
char *p = str + strlen(str);
while (p > str && (p[-1] == '\r' || p[-1] == '\n'))
*--p = '\0';
}
/* ----------------------------------------------------------------------
* Helper routines. (The base64 ones are defined in sshpubk.c.)
*/
#define isbase64(c) ( ((c) >= 'A' && (c) <= 'Z') || \
((c) >= 'a' && (c) <= 'z') || \
((c) >= '0' && (c) <= '9') || \
(c) == '+' || (c) == '/' || (c) == '=' \
)
/*
* Read an ASN.1/BER identifier and length pair.
*
* Flags are a combination of the #defines listed below.
*
* Returns -1 if unsuccessful; otherwise returns the number of
* bytes used out of the source data.
*/
/* ASN.1 tag classes. */
#define ASN1_CLASS_UNIVERSAL (0 << 6)
#define ASN1_CLASS_APPLICATION (1 << 6)
#define ASN1_CLASS_CONTEXT_SPECIFIC (2 << 6)
#define ASN1_CLASS_PRIVATE (3 << 6)
#define ASN1_CLASS_MASK (3 << 6)
/* Primitive versus constructed bit. */
#define ASN1_CONSTRUCTED (1 << 5)
static int ber_read_id_len(void *source, int sourcelen,
int *id, int *length, int *flags)
{
unsigned char *p = (unsigned char *) source;
if (sourcelen == 0)
return -1;
*flags = (*p & 0xE0);
if ((*p & 0x1F) == 0x1F) {
*id = 0;
while (*p & 0x80) {
p++, sourcelen--;
if (sourcelen == 0)
return -1;
*id = (*id << 7) | (*p & 0x7F);
}
p++, sourcelen--;
} else {
*id = *p & 0x1F;
p++, sourcelen--;
}
if (sourcelen == 0)
return -1;
if (*p & 0x80) {
unsigned len;
int n = *p & 0x7F;
p++, sourcelen--;
if (sourcelen < n)
return -1;
len = 0;
while (n--)
len = (len << 8) | (*p++);
sourcelen -= n;
*length = toint(len);
} else {
*length = *p;
p++, sourcelen--;
}
return p - (unsigned char *) source;
}
/*
* Write an ASN.1/BER identifier and length pair. Returns the
* number of bytes consumed. Assumes dest contains enough space.
* Will avoid writing anything if dest is NULL, but still return
* amount of space required.
*/
static int ber_write_id_len(void *dest, int id, int length, int flags)
{
unsigned char *d = (unsigned char *)dest;
int len = 0;
if (id <= 30) {
/*
* Identifier is one byte.
*/
len++;
if (d) *d++ = id | flags;
} else {
int n;
/*
* Identifier is multiple bytes: the first byte is 11111
* plus the flags, and subsequent bytes encode the value of
* the identifier, 7 bits at a time, with the top bit of
* each byte 1 except the last one which is 0.
*/
len++;
if (d) *d++ = 0x1F | flags;
for (n = 1; (id >> (7*n)) > 0; n++)
continue; /* count the bytes */
while (n--) {
len++;
if (d) *d++ = (n ? 0x80 : 0) | ((id >> (7*n)) & 0x7F);
}
}
if (length < 128) {
/*
* Length is one byte.
*/
len++;
if (d) *d++ = length;
} else {
int n;
/*
* Length is multiple bytes. The first is 0x80 plus the
* number of subsequent bytes, and the subsequent bytes
* encode the actual length.
*/
for (n = 1; (length >> (8*n)) > 0; n++)
continue; /* count the bytes */
len++;
if (d) *d++ = 0x80 | n;
while (n--) {
len++;
if (d) *d++ = (length >> (8*n)) & 0xFF;
}
}
return len;
}
static int put_uint32(void *target, unsigned val)
{
unsigned char *d = (unsigned char *)target;
PUT_32BIT(d, val);
return 4;
}
static int put_string(void *target, const void *data, int len)
{
unsigned char *d = (unsigned char *)target;
PUT_32BIT(d, len);
memcpy(d+4, data, len);
return len+4;
}
static int put_string_z(void *target, const char *string)
{
return put_string(target, string, strlen(string));
}
static int put_mp(void *target, void *data, int len)
{
unsigned char *d = (unsigned char *)target;
unsigned char *i = (unsigned char *)data;
if (*i & 0x80) {
PUT_32BIT(d, len+1);
d[4] = 0;
memcpy(d+5, data, len);
return len+5;
} else {
PUT_32BIT(d, len);
memcpy(d+4, data, len);
return len+4;
}
}
/* Simple structure to point to an mp-int within a blob. */
struct mpint_pos { void *start; int bytes; };
static int ssh2_read_mpint(void *data, int len, struct mpint_pos *ret)
{
int bytes;
unsigned char *d = (unsigned char *) data;
if (len < 4)
goto error;
bytes = toint(GET_32BIT(d));
if (bytes < 0 || len-4 < bytes)
goto error;
ret->start = d + 4;
ret->bytes = bytes;
return bytes+4;
error:
ret->start = NULL;
ret->bytes = -1;
return len; /* ensure further calls fail as well */
}
/* ----------------------------------------------------------------------
* Code to read and write OpenSSH private keys, in the old-style PEM
* format.
*/
typedef enum {
OP_DSA, OP_RSA, OP_ECDSA
} openssh_pem_keytype;
typedef enum {
OP_E_3DES, OP_E_AES
} openssh_pem_enc;
struct openssh_pem_key {
openssh_pem_keytype keytype;
int encrypted;
openssh_pem_enc encryption;
char iv[32];
unsigned char *keyblob;
int keyblob_len, keyblob_size;
};
static struct openssh_pem_key *load_openssh_pem_key(const Filename *filename,
const char **errmsg_p)
{
struct openssh_pem_key *ret;
FILE *fp = NULL;
char *line = NULL;
const char *errmsg;
char *p;
int headers_done;
char base64_bit[4];
int base64_chars = 0;
ret = snew(struct openssh_pem_key);
ret->keyblob = NULL;
ret->keyblob_len = ret->keyblob_size = 0;
fp = f_open(filename, "r", FALSE);
if (!fp) {
errmsg = "unable to open key file";
goto error;
}
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (!strstartswith(line, "-----BEGIN ") ||
!strendswith(line, "PRIVATE KEY-----")) {
errmsg = "file does not begin with OpenSSH key header";
goto error;
}
/*
* Parse the BEGIN line. For old-format keys, this tells us the
* type of the key; for new-format keys, all it tells us is the
* format, and we'll find out the key type once we parse the
* base64.
*/
if (!strcmp(line, "-----BEGIN RSA PRIVATE KEY-----")) {
ret->keytype = OP_RSA;
} else if (!strcmp(line, "-----BEGIN DSA PRIVATE KEY-----")) {
ret->keytype = OP_DSA;
} else if (!strcmp(line, "-----BEGIN EC PRIVATE KEY-----")) {
ret->keytype = OP_ECDSA;
} else if (!strcmp(line, "-----BEGIN OPENSSH PRIVATE KEY-----")) {
errmsg = "this is a new-style OpenSSH key";
goto error;
} else {
errmsg = "unrecognised key type";
goto error;
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
ret->encrypted = FALSE;
memset(ret->iv, 0, sizeof(ret->iv));
headers_done = 0;
while (1) {
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (strstartswith(line, "-----END ") &&
strendswith(line, "PRIVATE KEY-----")) {
sfree(line);
line = NULL;
break; /* done */
}
if ((p = strchr(line, ':')) != NULL) {
if (headers_done) {
errmsg = "header found in body of key data";
goto error;
}
*p++ = '\0';
while (*p && isspace((unsigned char)*p)) p++;
if (!strcmp(line, "Proc-Type")) {
if (p[0] != '4' || p[1] != ',') {
errmsg = "Proc-Type is not 4 (only 4 is supported)";
goto error;
}
p += 2;
if (!strcmp(p, "ENCRYPTED"))
ret->encrypted = TRUE;
} else if (!strcmp(line, "DEK-Info")) {
int i, ivlen;
if (!strncmp(p, "DES-EDE3-CBC,", 13)) {
ret->encryption = OP_E_3DES;
ivlen = 8;
} else if (!strncmp(p, "AES-128-CBC,", 12)) {
ret->encryption = OP_E_AES;
ivlen = 16;
} else {
errmsg = "unsupported cipher";
goto error;
}
p = strchr(p, ',') + 1;/* always non-NULL, by above checks */
for (i = 0; i < ivlen; i++) {
unsigned j;
if (1 != sscanf(p, "%2x", &j)) {
errmsg = "expected more iv data in DEK-Info";
goto error;
}
ret->iv[i] = j;
p += 2;
}
if (*p) {
errmsg = "more iv data than expected in DEK-Info";
goto error;
}
}
} else {
headers_done = 1;
p = line;
while (isbase64(*p)) {
base64_bit[base64_chars++] = *p;
if (base64_chars == 4) {
unsigned char out[3];
int len;
base64_chars = 0;
len = base64_decode_atom(base64_bit, out);
if (len <= 0) {
errmsg = "invalid base64 encoding";
goto error;
}
if (ret->keyblob_len + len > ret->keyblob_size) {
ret->keyblob_size = ret->keyblob_len + len + 256;
ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
unsigned char);
}
memcpy(ret->keyblob + ret->keyblob_len, out, len);
ret->keyblob_len += len;
smemclr(out, sizeof(out));
}
p++;
}
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
fclose(fp);
fp = NULL;
if (ret->keyblob_len == 0 || !ret->keyblob) {
errmsg = "key body not present";
goto error;
}
if (ret->encrypted && ret->keyblob_len % 8 != 0) {
errmsg = "encrypted key blob is not a multiple of "
"cipher block size";
goto error;
}
smemclr(base64_bit, sizeof(base64_bit));
if (errmsg_p) *errmsg_p = NULL;
return ret;
error:
if (line) {
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
smemclr(base64_bit, sizeof(base64_bit));
if (ret) {
if (ret->keyblob) {
smemclr(ret->keyblob, ret->keyblob_size);
sfree(ret->keyblob);
}
smemclr(ret, sizeof(*ret));
sfree(ret);
}
if (errmsg_p) *errmsg_p = errmsg;
if (fp) fclose(fp);
return NULL;
}
int openssh_pem_encrypted(const Filename *filename)
{
struct openssh_pem_key *key = load_openssh_pem_key(filename, NULL);
int ret;
if (!key)
return 0;
ret = key->encrypted;
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
return ret;
}
struct ssh2_userkey *openssh_pem_read(const Filename *filename,
char *passphrase,
const char **errmsg_p)
{
struct openssh_pem_key *key = load_openssh_pem_key(filename, errmsg_p);
struct ssh2_userkey *retkey;
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
unsigned char *p, *q;
int ret, id, len, flags;
int i, num_integers;
struct ssh2_userkey *retval = NULL;
const char *errmsg;
unsigned char *blob;
int blobsize = 0, blobptr, privptr;
char *modptr = NULL;
int modlen = 0;
blob = NULL;
if (!key)
return NULL;
if (key->encrypted) {
/*
* Derive encryption key from passphrase and iv/salt:
*
* - let block A equal MD5(passphrase || iv)
* - let block B equal MD5(A || passphrase || iv)
* - block C would be MD5(B || passphrase || iv) and so on
* - encryption key is the first N bytes of A || B
*
* (Note that only 8 bytes of the iv are used for key
* derivation, even when the key is encrypted with AES and
* hence there are 16 bytes available.)
*/
struct MD5Context md5c;
unsigned char keybuf[32];
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, (unsigned char *)key->iv, 8);
MD5Final(keybuf, &md5c);
MD5Init(&md5c);
MD5Update(&md5c, keybuf, 16);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, (unsigned char *)key->iv, 8);
MD5Final(keybuf+16, &md5c);
/*
* Now decrypt the key blob.
*/
if (key->encryption == OP_E_3DES)
des3_decrypt_pubkey_ossh(keybuf, (unsigned char *)key->iv,
key->keyblob, key->keyblob_len);
else {
void *ctx;
assert(key->encryption == OP_E_AES);
ctx = aes_make_context();
aes128_key(ctx, keybuf);
aes_iv(ctx, (unsigned char *)key->iv);
aes_ssh2_decrypt_blk(ctx, key->keyblob, key->keyblob_len);
aes_free_context(ctx);
}
smemclr(&md5c, sizeof(md5c));
smemclr(keybuf, sizeof(keybuf));
}
/*
* Now we have a decrypted key blob, which contains an ASN.1
* encoded private key. We must now untangle the ASN.1.
*
* We expect the whole key blob to be formatted as a SEQUENCE
* (0x30 followed by a length code indicating that the rest of
* the blob is part of the sequence). Within that SEQUENCE we
* expect to see a bunch of INTEGERs. What those integers mean
* depends on the key type:
*
* - For RSA, we expect the integers to be 0, n, e, d, p, q,
* dmp1, dmq1, iqmp in that order. (The last three are d mod
* (p-1), d mod (q-1), inverse of q mod p respectively.)
*
* - For DSA, we expect them to be 0, p, q, g, y, x in that
* order.
*
* - In ECDSA the format is totally different: we see the
* SEQUENCE, but beneath is an INTEGER 1, OCTET STRING priv
* EXPLICIT [0] OID curve, EXPLICIT [1] BIT STRING pubPoint
*/
p = key->keyblob;
/* Expect the SEQUENCE header. Take its absence as a failure to
* decrypt, if the key was encrypted. */
ret = ber_read_id_len(p, key->keyblob_len, &id, &len, &flags);
p += ret;
if (ret < 0 || id != 16 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
/* Expect a load of INTEGERs. */
if (key->keytype == OP_RSA)
num_integers = 9;
else if (key->keytype == OP_DSA)
num_integers = 6;
else
num_integers = 0; /* placate compiler warnings */
if (key->keytype == OP_ECDSA) {
/* And now for something completely different */
unsigned char *priv;
int privlen;
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
const struct ssh_signkey *alg;
const struct ec_curve *curve;
int algnamelen, curvenamelen;
/* Read INTEGER 1 */
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 2 || len != 1 ||
key->keyblob+key->keyblob_len-p < len || p[0] != 1) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
p += 1;
/* Read private key OCTET STRING */
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 4 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
priv = p;
privlen = len;
p += len;
/* Read curve OID */
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 0 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 6 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
alg = ec_alg_by_oid(len, p, &curve);
if (!alg) {
errmsg = "Unsupported ECDSA curve.";
retval = NULL;
goto error;
}
p += len;
/* Read BIT STRING point */
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 1 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 3 || len < 0 ||
key->keyblob+key->keyblob_len-p < len ||
len != ((((curve->fieldBits + 7) / 8) * 2) + 2)) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
p += 1; len -= 1; /* Skip 0x00 before point */
/* Construct the key */
retkey = snew(struct ssh2_userkey);
if (!retkey) {
errmsg = "out of memory";
goto error;
}
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
retkey->alg = alg;
blob = snewn((4+19 + 4+8 + 4+len) + (4+1+privlen), unsigned char);
if (!blob) {
sfree(retkey);
errmsg = "out of memory";
goto error;
}
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
q = blob;
algnamelen = strlen(alg->name);
PUT_32BIT(q, algnamelen); q += 4;
memcpy(q, alg->name, algnamelen); q += algnamelen;
curvenamelen = strlen(curve->name);
PUT_32BIT(q, curvenamelen); q += 4;
memcpy(q, curve->name, curvenamelen); q += curvenamelen;
PUT_32BIT(q, len); q += 4;
memcpy(q, p, len); q += len;
/*
* To be acceptable to our createkey(), the private blob must
* contain a valid mpint, i.e. without the top bit set. But
* the input private string may have the top bit set, so we
* prefix a zero byte to ensure createkey() doesn't fail for
* that reason.
*/
PUT_32BIT(q, privlen+1);
q[4] = 0;
memcpy(q+5, priv, privlen);
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
retkey->data = retkey->alg->createkey(retkey->alg,
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
blob, q-blob,
q, 5+privlen);
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
if (!retkey->data) {
sfree(retkey);
errmsg = "unable to create key data structure";
goto error;
}
} else if (key->keytype == OP_RSA || key->keytype == OP_DSA) {
/*
* Space to create key blob in.
*/
blobsize = 256+key->keyblob_len;
blob = snewn(blobsize, unsigned char);
PUT_32BIT(blob, 7);
if (key->keytype == OP_DSA)
memcpy(blob+4, "ssh-dss", 7);
else if (key->keytype == OP_RSA)
memcpy(blob+4, "ssh-rsa", 7);
blobptr = 4+7;
privptr = -1;
for (i = 0; i < num_integers; i++) {
ret = ber_read_id_len(p, key->keyblob+key->keyblob_len-p,
&id, &len, &flags);
p += ret;
if (ret < 0 || id != 2 || len < 0 ||
key->keyblob+key->keyblob_len-p < len) {
errmsg = "ASN.1 decoding failure";
retval = key->encrypted ? SSH2_WRONG_PASSPHRASE : NULL;
goto error;
}
if (i == 0) {
/*
* The first integer should be zero always (I think
* this is some sort of version indication).
*/
if (len != 1 || p[0] != 0) {
errmsg = "version number mismatch";
goto error;
}
} else if (key->keytype == OP_RSA) {
/*
* Integers 1 and 2 go into the public blob but in the
* opposite order; integers 3, 4, 5 and 8 go into the
* private blob. The other two (6 and 7) are ignored.
*/
if (i == 1) {
/* Save the details for after we deal with number 2. */
modptr = (char *)p;
modlen = len;
} else if (i != 6 && i != 7) {
PUT_32BIT(blob+blobptr, len);
memcpy(blob+blobptr+4, p, len);
blobptr += 4+len;
if (i == 2) {
PUT_32BIT(blob+blobptr, modlen);
memcpy(blob+blobptr+4, modptr, modlen);
blobptr += 4+modlen;
privptr = blobptr;
}
}
} else if (key->keytype == OP_DSA) {
/*
* Integers 1-4 go into the public blob; integer 5 goes
* into the private blob.
*/
PUT_32BIT(blob+blobptr, len);
memcpy(blob+blobptr+4, p, len);
blobptr += 4+len;
if (i == 4)
privptr = blobptr;
}
/* Skip past the number. */
p += len;
}
/*
* Now put together the actual key. Simplest way to do this is
* to assemble our own key blobs and feed them to the createkey
* functions; this is a bit faffy but it does mean we get all
* the sanity checks for free.
*/
assert(privptr > 0); /* should have bombed by now if not */
retkey = snew(struct ssh2_userkey);
retkey->alg = (key->keytype == OP_RSA ? &ssh_rsa : &ssh_dss);
retkey->data = retkey->alg->createkey(retkey->alg, blob, privptr,
blob+privptr,
blobptr-privptr);
if (!retkey->data) {
sfree(retkey);
errmsg = "unable to create key data structure";
goto error;
}
} else {
assert(0 && "Bad key type from load_openssh_pem_key");
errmsg = "Bad key type from load_openssh_pem_key";
goto error;
}
/*
* The old key format doesn't include a comment in the private
* key file.
*/
retkey->comment = dupstr("imported-openssh-key");
errmsg = NULL; /* no error */
retval = retkey;
error:
if (blob) {
smemclr(blob, blobsize);
sfree(blob);
}
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
if (errmsg_p) *errmsg_p = errmsg;
return retval;
}
int openssh_pem_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase)
{
unsigned char *pubblob, *privblob, *spareblob;
int publen, privlen, sparelen = 0;
unsigned char *outblob;
int outlen;
struct mpint_pos numbers[9];
int nnumbers, pos, len, seqlen, i;
const char *header, *footer;
char zero[1];
unsigned char iv[8];
int ret = 0;
FILE *fp;
/*
* Fetch the key blobs.
*/
pubblob = key->alg->public_blob(key->data, &publen);
privblob = key->alg->private_blob(key->data, &privlen);
spareblob = outblob = NULL;
outblob = NULL;
len = 0;
/*
* Encode the OpenSSH key blob, and also decide on the header
* line.
*/
if (key->alg == &ssh_rsa || key->alg == &ssh_dss) {
/*
* The RSA and DSS handlers share some code because the two
* key types have very similar ASN.1 representations, as a
* plain SEQUENCE of big integers. So we set up a list of
* bignums per key type and then construct the actual blob in
* common code after that.
*/
if (key->alg == &ssh_rsa) {
int pos;
struct mpint_pos n, e, d, p, q, iqmp, dmp1, dmq1;
Bignum bd, bp, bq, bdmp1, bdmq1;
/*
* These blobs were generated from inside PuTTY, so we needn't
* treat them as untrusted.
*/
pos = 4 + GET_32BIT(pubblob);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &e);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &n);
pos = 0;
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &d);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &p);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &q);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &iqmp);
assert(e.start && iqmp.start); /* can't go wrong */
/* We also need d mod (p-1) and d mod (q-1). */
bd = bignum_from_bytes(d.start, d.bytes);
bp = bignum_from_bytes(p.start, p.bytes);
bq = bignum_from_bytes(q.start, q.bytes);
decbn(bp);
decbn(bq);
bdmp1 = bigmod(bd, bp);
bdmq1 = bigmod(bd, bq);
freebn(bd);
freebn(bp);
freebn(bq);
dmp1.bytes = (bignum_bitcount(bdmp1)+8)/8;
dmq1.bytes = (bignum_bitcount(bdmq1)+8)/8;
sparelen = dmp1.bytes + dmq1.bytes;
spareblob = snewn(sparelen, unsigned char);
dmp1.start = spareblob;
dmq1.start = spareblob + dmp1.bytes;
for (i = 0; i < dmp1.bytes; i++)
spareblob[i] = bignum_byte(bdmp1, dmp1.bytes-1 - i);
for (i = 0; i < dmq1.bytes; i++)
spareblob[i+dmp1.bytes] = bignum_byte(bdmq1, dmq1.bytes-1 - i);
freebn(bdmp1);
freebn(bdmq1);
numbers[0].start = zero; numbers[0].bytes = 1; zero[0] = '\0';
numbers[1] = n;
numbers[2] = e;
numbers[3] = d;
numbers[4] = p;
numbers[5] = q;
numbers[6] = dmp1;
numbers[7] = dmq1;
numbers[8] = iqmp;
nnumbers = 9;
header = "-----BEGIN RSA PRIVATE KEY-----\n";
footer = "-----END RSA PRIVATE KEY-----\n";
} else { /* ssh-dss */
int pos;
struct mpint_pos p, q, g, y, x;
/*
* These blobs were generated from inside PuTTY, so we needn't
* treat them as untrusted.
*/
pos = 4 + GET_32BIT(pubblob);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &p);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &q);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &g);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &y);
pos = 0;
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &x);
assert(y.start && x.start); /* can't go wrong */
numbers[0].start = zero; numbers[0].bytes = 1; zero[0] = '\0';
numbers[1] = p;
numbers[2] = q;
numbers[3] = g;
numbers[4] = y;
numbers[5] = x;
nnumbers = 6;
header = "-----BEGIN DSA PRIVATE KEY-----\n";
footer = "-----END DSA PRIVATE KEY-----\n";
}
/*
* Now count up the total size of the ASN.1 encoded integers,
* so as to determine the length of the containing SEQUENCE.
*/
len = 0;
for (i = 0; i < nnumbers; i++) {
len += ber_write_id_len(NULL, 2, numbers[i].bytes, 0);
len += numbers[i].bytes;
}
seqlen = len;
/* Now add on the SEQUENCE header. */
len += ber_write_id_len(NULL, 16, seqlen, ASN1_CONSTRUCTED);
/*
* Now we know how big outblob needs to be. Allocate it.
*/
outblob = snewn(len, unsigned char);
/*
* And write the data into it.
*/
pos = 0;
pos += ber_write_id_len(outblob+pos, 16, seqlen, ASN1_CONSTRUCTED);
for (i = 0; i < nnumbers; i++) {
pos += ber_write_id_len(outblob+pos, 2, numbers[i].bytes, 0);
memcpy(outblob+pos, numbers[i].start, numbers[i].bytes);
pos += numbers[i].bytes;
}
} else if (key->alg == &ssh_ecdsa_nistp256 ||
key->alg == &ssh_ecdsa_nistp384 ||
key->alg == &ssh_ecdsa_nistp521) {
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
const unsigned char *oid;
int oidlen;
int pointlen;
/*
* Structure of asn1:
* SEQUENCE
* INTEGER 1
* OCTET STRING (private key)
* [0]
* OID (curve)
* [1]
* BIT STRING (0x00 public key point)
*/
Clean up elliptic curve selection and naming. The ec_name_to_curve and ec_curve_to_name functions shouldn't really have had to exist at all: whenever any part of the PuTTY codebase starts using sshecc.c, it's starting from an ssh_signkey or ssh_kex pointer already found by some other means. So if we make sure not to lose that pointer, we should never need to do any string-based lookups to find the curve we want, and conversely, when we need to know the name of our curve or our algorithm, we should be able to look it up as a straightforward const char * starting from the algorithm pointer. This commit cleans things up so that that is indeed what happens. The ssh_signkey and ssh_kex structures defined in sshecc.c now have 'extra' fields containing pointers to all the necessary stuff; ec_name_to_curve and ec_curve_to_name have been completely removed; struct ec_curve has a string field giving the curve's name (but only for those curves which _have_ a name exposed in the wire protocol, i.e. the three NIST ones); struct ec_key keeps a pointer to the ssh_signkey it started from, and uses that to remember the algorithm name rather than reconstructing it from the curve. And I think I've got rid of all the ad-hockery scattered around the code that switches on curve->fieldBits or manually constructs curve names using stuff like sprintf("nistp%d"); the only remaining switch on fieldBits (necessary because that's the UI for choosing a curve in PuTTYgen) is at least centralised into one place in sshecc.c. One user-visible result is that the format of ed25519 host keys in the registry has changed: there's now no curve name prefix on them, because I think it's not really right to make up a name to use. So any early adopters who've been using snapshot PuTTY in the last week will be inconvenienced; sorry about that.
2015-05-15 09:13:05 +00:00
oid = ec_alg_oid(key->alg, &oidlen);
pointlen = (((struct ec_key *)key->data)->publicKey.curve->fieldBits
+ 7) / 8 * 2;
len = ber_write_id_len(NULL, 2, 1, 0);
len += 1;
len += ber_write_id_len(NULL, 4, privlen - 4, 0);
len+= privlen - 4;
len += ber_write_id_len(NULL, 0, oidlen +
ber_write_id_len(NULL, 6, oidlen, 0),
ASN1_CLASS_CONTEXT_SPECIFIC | ASN1_CONSTRUCTED);
len += ber_write_id_len(NULL, 6, oidlen, 0);
len += oidlen;
len += ber_write_id_len(NULL, 1, 2 + pointlen +
ber_write_id_len(NULL, 3, 2 + pointlen, 0),
ASN1_CLASS_CONTEXT_SPECIFIC | ASN1_CONSTRUCTED);
len += ber_write_id_len(NULL, 3, 2 + pointlen, 0);
len += 2 + pointlen;
seqlen = len;
len += ber_write_id_len(NULL, 16, seqlen, ASN1_CONSTRUCTED);
outblob = snewn(len, unsigned char);
assert(outblob);
pos = 0;
pos += ber_write_id_len(outblob+pos, 16, seqlen, ASN1_CONSTRUCTED);
pos += ber_write_id_len(outblob+pos, 2, 1, 0);
outblob[pos++] = 1;
pos += ber_write_id_len(outblob+pos, 4, privlen - 4, 0);
memcpy(outblob+pos, privblob + 4, privlen - 4);
pos += privlen - 4;
pos += ber_write_id_len(outblob+pos, 0, oidlen +
ber_write_id_len(NULL, 6, oidlen, 0),
ASN1_CLASS_CONTEXT_SPECIFIC | ASN1_CONSTRUCTED);
pos += ber_write_id_len(outblob+pos, 6, oidlen, 0);
memcpy(outblob+pos, oid, oidlen);
pos += oidlen;
pos += ber_write_id_len(outblob+pos, 1, 2 + pointlen +
ber_write_id_len(NULL, 3, 2 + pointlen, 0),
ASN1_CLASS_CONTEXT_SPECIFIC | ASN1_CONSTRUCTED);
pos += ber_write_id_len(outblob+pos, 3, 2 + pointlen, 0);
outblob[pos++] = 0;
memcpy(outblob+pos, pubblob+39, 1 + pointlen);
pos += 1 + pointlen;
header = "-----BEGIN EC PRIVATE KEY-----\n";
footer = "-----END EC PRIVATE KEY-----\n";
} else {
assert(0); /* zoinks! */
exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
}
/*
* Encrypt the key.
*
* For the moment, we still encrypt our OpenSSH keys using
* old-style 3DES.
*/
if (passphrase) {
struct MD5Context md5c;
unsigned char keybuf[32];
/*
* Round up to the cipher block size, ensuring we have at
* least one byte of padding (see below).
*/
outlen = (len+8) &~ 7;
{
unsigned char *tmp = snewn(outlen, unsigned char);
memcpy(tmp, outblob, len);
smemclr(outblob, len);
sfree(outblob);
outblob = tmp;
}
/*
* Padding on OpenSSH keys is deterministic. The number of
* padding bytes is always more than zero, and always at most
* the cipher block length. The value of each padding byte is
* equal to the number of padding bytes. So a plaintext that's
* an exact multiple of the block size will be padded with 08
* 08 08 08 08 08 08 08 (assuming a 64-bit block cipher); a
* plaintext one byte less than a multiple of the block size
* will be padded with just 01.
*
* This enables the OpenSSL key decryption function to strip
* off the padding algorithmically and return the unpadded
* plaintext to the next layer: it looks at the final byte, and
* then expects to find that many bytes at the end of the data
* with the same value. Those are all removed and the rest is
* returned.
*/
assert(pos == len);
while (pos < outlen) {
outblob[pos++] = outlen - len;
}
/*
* Invent an iv. Then derive encryption key from passphrase
* and iv/salt:
*
* - let block A equal MD5(passphrase || iv)
* - let block B equal MD5(A || passphrase || iv)
* - block C would be MD5(B || passphrase || iv) and so on
* - encryption key is the first N bytes of A || B
*/
for (i = 0; i < 8; i++) iv[i] = random_byte();
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, iv, 8);
MD5Final(keybuf, &md5c);
MD5Init(&md5c);
MD5Update(&md5c, keybuf, 16);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, iv, 8);
MD5Final(keybuf+16, &md5c);
/*
* Now encrypt the key blob.
*/
des3_encrypt_pubkey_ossh(keybuf, iv, outblob, outlen);
smemclr(&md5c, sizeof(md5c));
smemclr(keybuf, sizeof(keybuf));
} else {
/*
* If no encryption, the blob has exactly its original
* cleartext size.
*/
outlen = len;
}
/*
* And save it. We'll use Unix line endings just in case it's
* subsequently transferred in binary mode.
*/
fp = f_open(filename, "wb", TRUE); /* ensure Unix line endings */
if (!fp)
goto error;
fputs(header, fp);
if (passphrase) {
fprintf(fp, "Proc-Type: 4,ENCRYPTED\nDEK-Info: DES-EDE3-CBC,");
for (i = 0; i < 8; i++)
fprintf(fp, "%02X", iv[i]);
fprintf(fp, "\n\n");
}
base64_encode(fp, outblob, outlen, 64);
fputs(footer, fp);
fclose(fp);
ret = 1;
error:
if (outblob) {
smemclr(outblob, outlen);
sfree(outblob);
}
if (spareblob) {
smemclr(spareblob, sparelen);
sfree(spareblob);
}
if (privblob) {
smemclr(privblob, privlen);
sfree(privblob);
}
if (pubblob) {
smemclr(pubblob, publen);
sfree(pubblob);
}
return ret;
}
/* ----------------------------------------------------------------------
* Code to read and write OpenSSH private keys in the new-style format.
*/
typedef enum {
ON_E_NONE, ON_E_AES256CBC
} openssh_new_cipher;
typedef enum {
ON_K_NONE, ON_K_BCRYPT
} openssh_new_kdf;
struct openssh_new_key {
openssh_new_cipher cipher;
openssh_new_kdf kdf;
union {
struct {
int rounds;
/* This points to a position within keyblob, not a
* separately allocated thing */
const unsigned char *salt;
int saltlen;
} bcrypt;
} kdfopts;
int nkeys, key_wanted;
/* This too points to a position within keyblob */
unsigned char *privatestr;
int privatelen;
unsigned char *keyblob;
int keyblob_len, keyblob_size;
};
static struct openssh_new_key *load_openssh_new_key(const Filename *filename,
const char **errmsg_p)
{
struct openssh_new_key *ret;
FILE *fp = NULL;
char *line = NULL;
const char *errmsg;
char *p;
char base64_bit[4];
int base64_chars = 0;
const void *filedata;
int filelen;
const void *string, *kdfopts, *bcryptsalt, *pubkey;
int stringlen, kdfoptlen, bcryptsaltlen, pubkeylen;
unsigned bcryptrounds, nkeys, key_index;
ret = snew(struct openssh_new_key);
ret->keyblob = NULL;
ret->keyblob_len = ret->keyblob_size = 0;
fp = f_open(filename, "r", FALSE);
if (!fp) {
errmsg = "unable to open key file";
goto error;
}
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (0 != strcmp(line, "-----BEGIN OPENSSH PRIVATE KEY-----")) {
errmsg = "file does not begin with OpenSSH new-style key header";
goto error;
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
while (1) {
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (0 == strcmp(line, "-----END OPENSSH PRIVATE KEY-----")) {
sfree(line);
line = NULL;
break; /* done */
}
p = line;
while (isbase64(*p)) {
base64_bit[base64_chars++] = *p;
if (base64_chars == 4) {
unsigned char out[3];
int len;
base64_chars = 0;
len = base64_decode_atom(base64_bit, out);
if (len <= 0) {
errmsg = "invalid base64 encoding";
goto error;
}
if (ret->keyblob_len + len > ret->keyblob_size) {
ret->keyblob_size = ret->keyblob_len + len + 256;
ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
unsigned char);
}
memcpy(ret->keyblob + ret->keyblob_len, out, len);
ret->keyblob_len += len;
smemclr(out, sizeof(out));
}
p++;
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
fclose(fp);
fp = NULL;
if (ret->keyblob_len == 0 || !ret->keyblob) {
errmsg = "key body not present";
goto error;
}
filedata = ret->keyblob;
filelen = ret->keyblob_len;
if (filelen < 15 || 0 != memcmp(filedata, "openssh-key-v1\0", 15)) {
errmsg = "new-style OpenSSH magic number missing\n";
goto error;
}
filedata = (const char *)filedata + 15;
filelen -= 15;
if (!(string = get_ssh_string(&filelen, &filedata, &stringlen))) {
errmsg = "encountered EOF before cipher name\n";
goto error;
}
if (match_ssh_id(stringlen, string, "none")) {
ret->cipher = ON_E_NONE;
} else if (match_ssh_id(stringlen, string, "aes256-cbc")) {
ret->cipher = ON_E_AES256CBC;
} else {
errmsg = "unrecognised cipher name\n";
goto error;
}
if (!(string = get_ssh_string(&filelen, &filedata, &stringlen))) {
errmsg = "encountered EOF before kdf name\n";
goto error;
}
if (match_ssh_id(stringlen, string, "none")) {
ret->kdf = ON_K_NONE;
} else if (match_ssh_id(stringlen, string, "bcrypt")) {
ret->kdf = ON_K_BCRYPT;
} else {
errmsg = "unrecognised kdf name\n";
goto error;
}
if (!(kdfopts = get_ssh_string(&filelen, &filedata, &kdfoptlen))) {
errmsg = "encountered EOF before kdf options\n";
goto error;
}
switch (ret->kdf) {
case ON_K_NONE:
if (kdfoptlen != 0) {
errmsg = "expected empty options string for 'none' kdf";
goto error;
}
break;
case ON_K_BCRYPT:
if (!(bcryptsalt = get_ssh_string(&kdfoptlen, &kdfopts,
&bcryptsaltlen))) {
errmsg = "bcrypt options string did not contain salt\n";
goto error;
}
if (!get_ssh_uint32(&kdfoptlen, &kdfopts, &bcryptrounds)) {
errmsg = "bcrypt options string did not contain round count\n";
goto error;
}
ret->kdfopts.bcrypt.salt = bcryptsalt;
ret->kdfopts.bcrypt.saltlen = bcryptsaltlen;
ret->kdfopts.bcrypt.rounds = bcryptrounds;
break;
}
/*
* At this point we expect a uint32 saying how many keys are
* stored in this file. OpenSSH new-style key files can
* contain more than one. Currently we don't have any user
* interface to specify which one we're trying to extract, so
* we just bomb out with an error if more than one is found in
* the file. However, I've put in all the mechanism here to
* extract the nth one for a given n, in case we later connect
* up some UI to that mechanism. Just arrange that the
* 'key_wanted' field is set to a value in the range [0,
* nkeys) by some mechanism.
*/
if (!get_ssh_uint32(&filelen, &filedata, &nkeys)) {
errmsg = "encountered EOF before key count\n";
goto error;
}
if (nkeys != 1) {
errmsg = "multiple keys in new-style OpenSSH key file "
"not supported\n";
goto error;
}
ret->nkeys = nkeys;
ret->key_wanted = 0;
for (key_index = 0; key_index < nkeys; key_index++) {
if (!(pubkey = get_ssh_string(&filelen, &filedata, &pubkeylen))) {
errmsg = "encountered EOF before kdf options\n";
goto error;
}
}
/*
* Now we expect a string containing the encrypted part of the
* key file.
*/
if (!(string = get_ssh_string(&filelen, &filedata, &stringlen))) {
errmsg = "encountered EOF before private key container\n";
goto error;
}
ret->privatestr = (unsigned char *)string;
ret->privatelen = stringlen;
/*
* And now we're done, until asked to actually decrypt.
*/
smemclr(base64_bit, sizeof(base64_bit));
if (errmsg_p) *errmsg_p = NULL;
return ret;
error:
if (line) {
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
smemclr(base64_bit, sizeof(base64_bit));
if (ret) {
if (ret->keyblob) {
smemclr(ret->keyblob, ret->keyblob_size);
sfree(ret->keyblob);
}
smemclr(ret, sizeof(*ret));
sfree(ret);
}
if (errmsg_p) *errmsg_p = errmsg;
if (fp) fclose(fp);
return NULL;
}
int openssh_new_encrypted(const Filename *filename)
{
struct openssh_new_key *key = load_openssh_new_key(filename, NULL);
int ret;
if (!key)
return 0;
ret = (key->cipher != ON_E_NONE);
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
return ret;
}
struct ssh2_userkey *openssh_new_read(const Filename *filename,
char *passphrase,
const char **errmsg_p)
{
struct openssh_new_key *key = load_openssh_new_key(filename, errmsg_p);
struct ssh2_userkey *retkey = NULL;
int i;
struct ssh2_userkey *retval = NULL;
const char *errmsg;
unsigned checkint0, checkint1;
const void *priv, *string;
int privlen, stringlen, key_index;
const struct ssh_signkey *alg = NULL;
if (!key)
return NULL;
if (key->cipher != ON_E_NONE) {
unsigned char keybuf[48];
int keysize;
/*
* Construct the decryption key, and decrypt the string.
*/
switch (key->cipher) {
case ON_E_NONE:
keysize = 0;
break;
case ON_E_AES256CBC:
keysize = 48; /* 32 byte key + 16 byte IV */
break;
default:
assert(0 && "Bad cipher enumeration value");
}
assert(keysize <= sizeof(keybuf));
switch (key->kdf) {
case ON_K_NONE:
memset(keybuf, 0, keysize);
break;
case ON_K_BCRYPT:
openssh_bcrypt(passphrase,
key->kdfopts.bcrypt.salt,
key->kdfopts.bcrypt.saltlen,
key->kdfopts.bcrypt.rounds,
keybuf, keysize);
break;
default:
assert(0 && "Bad kdf enumeration value");
}
switch (key->cipher) {
case ON_E_NONE:
break;
case ON_E_AES256CBC:
if (key->privatelen % 16 != 0) {
errmsg = "private key container length is not a"
" multiple of AES block size\n";
goto error;
}
{
void *ctx = aes_make_context();
aes256_key(ctx, keybuf);
aes_iv(ctx, keybuf + 32);
aes_ssh2_decrypt_blk(ctx, key->privatestr,
key->privatelen);
aes_free_context(ctx);
}
break;
default:
assert(0 && "Bad cipher enumeration value");
}
}
/*
* Now parse the entire encrypted section, and extract the key
* identified by key_wanted.
*/
priv = key->privatestr;
privlen = key->privatelen;
if (!get_ssh_uint32(&privlen, &priv, &checkint0) ||
!get_ssh_uint32(&privlen, &priv, &checkint1) ||
checkint0 != checkint1) {
errmsg = "decryption check failed";
goto error;
}
retkey = NULL;
for (key_index = 0; key_index < key->nkeys; key_index++) {
const unsigned char *thiskey;
int thiskeylen;
/*
* Read the key type, which will tell us how to scan over
* the key to get to the next one.
*/
if (!(string = get_ssh_string(&privlen, &priv, &stringlen))) {
errmsg = "expected key type in private string";
goto error;
}
/*
* Preliminary key type identification, and decide how
* many pieces of key we expect to see. Currently
* (conveniently) all key types can be seen as some number
* of strings, so we just need to know how many of them to
* skip over. (The numbers below exclude the key comment.)
*/
{
/* find_pubkey_alg needs a zero-terminated copy of the
* algorithm name */
char *name_zt = dupprintf("%.*s", stringlen, (char *)string);
alg = find_pubkey_alg(name_zt);
sfree(name_zt);
}
if (!alg) {
errmsg = "private key type not recognised\n";
goto error;
}
thiskey = priv;
/*
* Skip over the pieces of key.
*/
for (i = 0; i < alg->openssh_private_npieces; i++) {
if (!(string = get_ssh_string(&privlen, &priv, &stringlen))) {
errmsg = "ran out of data in mid-private-key";
goto error;
}
}
thiskeylen = (int)((const unsigned char *)priv -
(const unsigned char *)thiskey);
if (key_index == key->key_wanted) {
retkey = snew(struct ssh2_userkey);
retkey->comment = NULL;
retkey->alg = alg;
retkey->data = alg->openssh_createkey(alg, &thiskey, &thiskeylen);
if (!retkey->data) {
errmsg = "unable to create key data structure";
goto error;
}
}
/*
* Read the key comment.
*/
if (!(string = get_ssh_string(&privlen, &priv, &stringlen))) {
errmsg = "ran out of data at key comment";
goto error;
}
if (key_index == key->key_wanted) {
assert(retkey);
retkey->comment = dupprintf("%.*s", stringlen,
(const char *)string);
}
}
if (!retkey) {
errmsg = "key index out of range";
goto error;
}
/*
* Now we expect nothing left but padding.
*/
for (i = 0; i < privlen; i++) {
if (((const unsigned char *)priv)[i] != (unsigned char)(i+1)) {
errmsg = "padding at end of private string did not match";
goto error;
}
}
errmsg = NULL; /* no error */
retval = retkey;
retkey = NULL; /* prevent the free */
error:
if (retkey) {
sfree(retkey->comment);
if (retkey->data) {
assert(alg);
alg->freekey(retkey->data);
}
sfree(retkey);
}
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
if (errmsg_p) *errmsg_p = errmsg;
return retval;
}
int openssh_new_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase)
{
unsigned char *pubblob, *privblob, *outblob, *p;
unsigned char *private_section_start, *private_section_length_field;
int publen, privlen, commentlen, maxsize, padvalue, i;
unsigned checkint;
int ret = 0;
unsigned char bcrypt_salt[16];
const int bcrypt_rounds = 16;
FILE *fp;
/*
* Fetch the key blobs and find out the lengths of things.
*/
pubblob = key->alg->public_blob(key->data, &publen);
i = key->alg->openssh_fmtkey(key->data, NULL, 0);
privblob = snewn(i, unsigned char);
privlen = key->alg->openssh_fmtkey(key->data, privblob, i);
assert(privlen == i);
commentlen = strlen(key->comment);
/*
* Allocate enough space for the full binary key format. No need
* to be absolutely precise here.
*/
maxsize = (16 + /* magic number */
32 + /* cipher name string */
32 + /* kdf name string */
64 + /* kdf options string */
4 + /* key count */
4+publen + /* public key string */
4 + /* string header for private section */
8 + /* checkint x 2 */
4+strlen(key->alg->name) + /* key type string */
privlen + /* private blob */
4+commentlen + /* comment string */
16); /* padding at end of private section */
outblob = snewn(maxsize, unsigned char);
/*
* Construct the cleartext version of the blob.
*/
p = outblob;
/* Magic number. */
memcpy(p, "openssh-key-v1\0", 15);
p += 15;
/* Cipher and kdf names, and kdf options. */
if (!passphrase) {
memset(bcrypt_salt, 0, sizeof(bcrypt_salt)); /* prevent warnings */
p += put_string_z(p, "none");
p += put_string_z(p, "none");
p += put_string_z(p, "");
} else {
unsigned char *q;
for (i = 0; i < (int)sizeof(bcrypt_salt); i++)
bcrypt_salt[i] = random_byte();
p += put_string_z(p, "aes256-cbc");
p += put_string_z(p, "bcrypt");
q = p;
p += 4;
p += put_string(p, bcrypt_salt, sizeof(bcrypt_salt));
p += put_uint32(p, bcrypt_rounds);
PUT_32BIT_MSB_FIRST(q, (unsigned)(p - (q+4)));
}
/* Number of keys. */
p += put_uint32(p, 1);
/* Public blob. */
p += put_string(p, pubblob, publen);
/* Begin private section. */
private_section_length_field = p;
p += 4;
private_section_start = p;
/* checkint. */
checkint = 0;
for (i = 0; i < 4; i++)
checkint = (checkint << 8) + random_byte();
p += put_uint32(p, checkint);
p += put_uint32(p, checkint);
/* Private key. The main private blob goes inline, with no string
* wrapper. */
p += put_string_z(p, key->alg->name);
memcpy(p, privblob, privlen);
p += privlen;
/* Comment. */
p += put_string_z(p, key->comment);
/* Pad out the encrypted section. */
padvalue = 1;
do {
*p++ = padvalue++;
} while ((p - private_section_start) & 15);
assert(p - outblob < maxsize);
/* Go back and fill in the length field for the private section. */
PUT_32BIT_MSB_FIRST(private_section_length_field,
p - private_section_start);
if (passphrase) {
/*
* Encrypt the private section. We need 48 bytes of key
* material: 32 bytes AES key + 16 bytes iv.
*/
unsigned char keybuf[48];
void *ctx;
openssh_bcrypt(passphrase,
bcrypt_salt, sizeof(bcrypt_salt), bcrypt_rounds,
keybuf, sizeof(keybuf));
ctx = aes_make_context();
aes256_key(ctx, keybuf);
aes_iv(ctx, keybuf + 32);
aes_ssh2_encrypt_blk(ctx, private_section_start,
p - private_section_start);
aes_free_context(ctx);
smemclr(keybuf, sizeof(keybuf));
}
/*
* And save it. We'll use Unix line endings just in case it's
* subsequently transferred in binary mode.
*/
fp = f_open(filename, "wb", TRUE); /* ensure Unix line endings */
if (!fp)
goto error;
fputs("-----BEGIN OPENSSH PRIVATE KEY-----\n", fp);
base64_encode(fp, outblob, p - outblob, 64);
fputs("-----END OPENSSH PRIVATE KEY-----\n", fp);
fclose(fp);
ret = 1;
error:
if (outblob) {
smemclr(outblob, maxsize);
sfree(outblob);
}
if (privblob) {
smemclr(privblob, privlen);
sfree(privblob);
}
if (pubblob) {
smemclr(pubblob, publen);
sfree(pubblob);
}
return ret;
}
/* ----------------------------------------------------------------------
* The switch function openssh_auto_write(), which chooses one of the
* concrete OpenSSH output formats based on the key type.
*/
int openssh_auto_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase)
{
/*
* The old OpenSSH format supports a fixed list of key types. We
* assume that anything not in that fixed list is newer, and hence
* will use the new format.
*/
if (key->alg == &ssh_dss ||
key->alg == &ssh_rsa ||
key->alg == &ssh_ecdsa_nistp256 ||
key->alg == &ssh_ecdsa_nistp384 ||
key->alg == &ssh_ecdsa_nistp521)
return openssh_pem_write(filename, key, passphrase);
else
return openssh_new_write(filename, key, passphrase);
}
/* ----------------------------------------------------------------------
* Code to read ssh.com private keys.
*/
/*
* The format of the base64 blob is largely SSH-2-packet-formatted,
* except that mpints are a bit different: they're more like the
* old SSH-1 mpint. You have a 32-bit bit count N, followed by
* (N+7)/8 bytes of data.
*
* So. The blob contains:
*
* - uint32 0x3f6ff9eb (magic number)
* - uint32 size (total blob size)
* - string key-type (see below)
* - string cipher-type (tells you if key is encrypted)
* - string encrypted-blob
*
* (The first size field includes the size field itself and the
* magic number before it. All other size fields are ordinary SSH-2
* strings, so the size field indicates how much data is to
* _follow_.)
*
* The encrypted blob, once decrypted, contains a single string
* which in turn contains the payload. (This allows padding to be
* added after that string while still making it clear where the
* real payload ends. Also it probably makes for a reasonable
* decryption check.)
*
* The payload blob, for an RSA key, contains:
* - mpint e
* - mpint d
* - mpint n (yes, the public and private stuff is intermixed)
* - mpint u (presumably inverse of p mod q)
* - mpint p (p is the smaller prime)
* - mpint q (q is the larger)
*
* For a DSA key, the payload blob contains:
* - uint32 0
* - mpint p
* - mpint g
* - mpint q
* - mpint y
* - mpint x
*
* Alternatively, if the parameters are `predefined', that
* (0,p,g,q) sequence can be replaced by a uint32 1 and a string
* containing some predefined parameter specification. *shudder*,
* but I doubt we'll encounter this in real life.
*
* The key type strings are ghastly. The RSA key I looked at had a
* type string of
*
* `if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}'
*
* and the DSA key wasn't much better:
*
* `dl-modp{sign{dsa-nist-sha1},dh{plain}}'
*
* It isn't clear that these will always be the same. I think it
* might be wise just to look at the `if-modn{sign{rsa' and
* `dl-modp{sign{dsa' prefixes.
*
* Finally, the encryption. The cipher-type string appears to be
* either `none' or `3des-cbc'. Looks as if this is SSH-2-style
* 3des-cbc (i.e. outer cbc rather than inner). The key is created
* from the passphrase by means of yet another hashing faff:
*
* - first 16 bytes are MD5(passphrase)
* - next 16 bytes are MD5(passphrase || first 16 bytes)
* - if there were more, they'd be MD5(passphrase || first 32),
* and so on.
*/
#define SSHCOM_MAGIC_NUMBER 0x3f6ff9eb
struct sshcom_key {
char comment[256]; /* allowing any length is overkill */
unsigned char *keyblob;
int keyblob_len, keyblob_size;
};
static struct sshcom_key *load_sshcom_key(const Filename *filename,
const char **errmsg_p)
{
struct sshcom_key *ret;
FILE *fp;
char *line = NULL;
int hdrstart, len;
const char *errmsg;
char *p;
int headers_done;
char base64_bit[4];
int base64_chars = 0;
ret = snew(struct sshcom_key);
ret->comment[0] = '\0';
ret->keyblob = NULL;
ret->keyblob_len = ret->keyblob_size = 0;
fp = f_open(filename, "r", FALSE);
if (!fp) {
errmsg = "unable to open key file";
goto error;
}
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (0 != strcmp(line, "---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----")) {
errmsg = "file does not begin with ssh.com key header";
goto error;
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
headers_done = 0;
while (1) {
if (!(line = fgetline(fp))) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line);
if (!strcmp(line, "---- END SSH2 ENCRYPTED PRIVATE KEY ----")) {
sfree(line);
line = NULL;
break; /* done */
}
if ((p = strchr(line, ':')) != NULL) {
if (headers_done) {
errmsg = "header found in body of key data";
goto error;
}
*p++ = '\0';
while (*p && isspace((unsigned char)*p)) p++;
hdrstart = p - line;
/*
* Header lines can end in a trailing backslash for
* continuation.
*/
len = hdrstart + strlen(line+hdrstart);
assert(!line[len]);
while (line[len-1] == '\\') {
char *line2;
int line2len;
line2 = fgetline(fp);
if (!line2) {
errmsg = "unexpected end of file";
goto error;
}
strip_crlf(line2);
line2len = strlen(line2);
line = sresize(line, len + line2len + 1, char);
strcpy(line + len - 1, line2);
len += line2len - 1;
assert(!line[len]);
smemclr(line2, strlen(line2));
sfree(line2);
line2 = NULL;
}
p = line + hdrstart;
strip_crlf(p);
if (!strcmp(line, "Comment")) {
/* Strip quotes in comment if present. */
if (p[0] == '"' && p[strlen(p)-1] == '"') {
p++;
p[strlen(p)-1] = '\0';
}
strncpy(ret->comment, p, sizeof(ret->comment));
ret->comment[sizeof(ret->comment)-1] = '\0';
}
} else {
headers_done = 1;
p = line;
while (isbase64(*p)) {
base64_bit[base64_chars++] = *p;
if (base64_chars == 4) {
unsigned char out[3];
base64_chars = 0;
len = base64_decode_atom(base64_bit, out);
if (len <= 0) {
errmsg = "invalid base64 encoding";
goto error;
}
if (ret->keyblob_len + len > ret->keyblob_size) {
ret->keyblob_size = ret->keyblob_len + len + 256;
ret->keyblob = sresize(ret->keyblob, ret->keyblob_size,
unsigned char);
}
memcpy(ret->keyblob + ret->keyblob_len, out, len);
ret->keyblob_len += len;
}
p++;
}
}
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
if (ret->keyblob_len == 0 || !ret->keyblob) {
errmsg = "key body not present";
goto error;
}
fclose(fp);
if (errmsg_p) *errmsg_p = NULL;
return ret;
error:
if (fp)
fclose(fp);
if (line) {
smemclr(line, strlen(line));
sfree(line);
line = NULL;
}
if (ret) {
if (ret->keyblob) {
smemclr(ret->keyblob, ret->keyblob_size);
sfree(ret->keyblob);
}
smemclr(ret, sizeof(*ret));
sfree(ret);
}
if (errmsg_p) *errmsg_p = errmsg;
return NULL;
}
int sshcom_encrypted(const Filename *filename, char **comment)
{
struct sshcom_key *key = load_sshcom_key(filename, NULL);
int pos, len, answer;
answer = 0;
*comment = NULL;
if (!key)
goto done;
/*
* Check magic number.
*/
if (GET_32BIT(key->keyblob) != 0x3f6ff9eb) {
goto done; /* key is invalid */
}
/*
* Find the cipher-type string.
*/
pos = 8;
if (key->keyblob_len < pos+4)
goto done; /* key is far too short */
len = toint(GET_32BIT(key->keyblob + pos));
if (len < 0 || len > key->keyblob_len - pos - 4)
goto done; /* key is far too short */
pos += 4 + len; /* skip key type */
len = toint(GET_32BIT(key->keyblob + pos)); /* find cipher-type length */
if (len < 0 || len > key->keyblob_len - pos - 4)
goto done; /* cipher type string is incomplete */
if (len != 4 || 0 != memcmp(key->keyblob + pos + 4, "none", 4))
answer = 1;
done:
if (key) {
*comment = dupstr(key->comment);
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
} else {
*comment = dupstr("");
}
return answer;
}
static int sshcom_read_mpint(void *data, int len, struct mpint_pos *ret)
{
unsigned bits, bytes;
unsigned char *d = (unsigned char *) data;
if (len < 4)
goto error;
bits = GET_32BIT(d);
bytes = (bits + 7) / 8;
if (len < 4+bytes)
goto error;
ret->start = d + 4;
ret->bytes = bytes;
return bytes+4;
error:
ret->start = NULL;
ret->bytes = -1;
return len; /* ensure further calls fail as well */
}
static int sshcom_put_mpint(void *target, void *data, int len)
{
unsigned char *d = (unsigned char *)target;
unsigned char *i = (unsigned char *)data;
int bits = len * 8 - 1;
while (bits > 0) {
if (*i & (1 << (bits & 7)))
break;
if (!(bits-- & 7))
i++, len--;
}
PUT_32BIT(d, bits+1);
memcpy(d+4, i, len);
return len+4;
}
struct ssh2_userkey *sshcom_read(const Filename *filename, char *passphrase,
const char **errmsg_p)
{
struct sshcom_key *key = load_sshcom_key(filename, errmsg_p);
const char *errmsg;
int pos, len;
const char prefix_rsa[] = "if-modn{sign{rsa";
const char prefix_dsa[] = "dl-modp{sign{dsa";
enum { RSA, DSA } type;
int encrypted;
char *ciphertext;
int cipherlen;
struct ssh2_userkey *ret = NULL, *retkey;
const struct ssh_signkey *alg;
unsigned char *blob = NULL;
int blobsize = 0, publen, privlen;
if (!key)
return NULL;
/*
* Check magic number.
*/
if (GET_32BIT(key->keyblob) != SSHCOM_MAGIC_NUMBER) {
errmsg = "key does not begin with magic number";
goto error;
}
/*
* Determine the key type.
*/
pos = 8;
if (key->keyblob_len < pos+4 ||
(len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
len > key->keyblob_len - pos - 4) {
errmsg = "key blob does not contain a key type string";
goto error;
}
if (len > sizeof(prefix_rsa) - 1 &&
!memcmp(key->keyblob+pos+4, prefix_rsa, sizeof(prefix_rsa) - 1)) {
type = RSA;
} else if (len > sizeof(prefix_dsa) - 1 &&
!memcmp(key->keyblob+pos+4, prefix_dsa, sizeof(prefix_dsa) - 1)) {
type = DSA;
} else {
errmsg = "key is of unknown type";
goto error;
}
pos += 4+len;
/*
* Determine the cipher type.
*/
if (key->keyblob_len < pos+4 ||
(len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
len > key->keyblob_len - pos - 4) {
errmsg = "key blob does not contain a cipher type string";
goto error;
}
if (len == 4 && !memcmp(key->keyblob+pos+4, "none", 4))
encrypted = 0;
else if (len == 8 && !memcmp(key->keyblob+pos+4, "3des-cbc", 8))
encrypted = 1;
else {
errmsg = "key encryption is of unknown type";
goto error;
}
pos += 4+len;
/*
* Get hold of the encrypted part of the key.
*/
if (key->keyblob_len < pos+4 ||
(len = toint(GET_32BIT(key->keyblob + pos))) < 0 ||
len > key->keyblob_len - pos - 4) {
errmsg = "key blob does not contain actual key data";
goto error;
}
ciphertext = (char *)key->keyblob + pos + 4;
cipherlen = len;
if (cipherlen == 0) {
errmsg = "length of key data is zero";
goto error;
}
/*
* Decrypt it if necessary.
*/
if (encrypted) {
/*
* Derive encryption key from passphrase and iv/salt:
*
* - let block A equal MD5(passphrase)
* - let block B equal MD5(passphrase || A)
* - block C would be MD5(passphrase || A || B) and so on
* - encryption key is the first N bytes of A || B
*/
struct MD5Context md5c;
unsigned char keybuf[32], iv[8];
if (cipherlen % 8 != 0) {
errmsg = "encrypted part of key is not a multiple of cipher block"
" size";
goto error;
}
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Final(keybuf, &md5c);
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, keybuf, 16);
MD5Final(keybuf+16, &md5c);
/*
* Now decrypt the key blob.
*/
memset(iv, 0, sizeof(iv));
des3_decrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
cipherlen);
smemclr(&md5c, sizeof(md5c));
smemclr(keybuf, sizeof(keybuf));
/*
* Hereafter we return WRONG_PASSPHRASE for any parsing
* error. (But only if we've just tried to decrypt it!
* Returning WRONG_PASSPHRASE for an unencrypted key is
* automatic doom.)
*/
if (encrypted)
ret = SSH2_WRONG_PASSPHRASE;
}
/*
* Strip away the containing string to get to the real meat.
*/
len = toint(GET_32BIT(ciphertext));
if (len < 0 || len > cipherlen-4) {
errmsg = "containing string was ill-formed";
goto error;
}
ciphertext += 4;
cipherlen = len;
/*
* Now we break down into RSA versus DSA. In either case we'll
* construct public and private blobs in our own format, and
* end up feeding them to alg->createkey().
*/
blobsize = cipherlen + 256;
blob = snewn(blobsize, unsigned char);
privlen = 0;
if (type == RSA) {
struct mpint_pos n, e, d, u, p, q;
int pos = 0;
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &e);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &d);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &n);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &u);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
if (!q.start) {
errmsg = "key data did not contain six integers";
goto error;
}
alg = &ssh_rsa;
pos = 0;
pos += put_string(blob+pos, "ssh-rsa", 7);
pos += put_mp(blob+pos, e.start, e.bytes);
pos += put_mp(blob+pos, n.start, n.bytes);
publen = pos;
pos += put_string(blob+pos, d.start, d.bytes);
pos += put_mp(blob+pos, q.start, q.bytes);
pos += put_mp(blob+pos, p.start, p.bytes);
pos += put_mp(blob+pos, u.start, u.bytes);
privlen = pos - publen;
} else {
struct mpint_pos p, q, g, x, y;
int pos = 4;
assert(type == DSA); /* the only other option from the if above */
if (GET_32BIT(ciphertext) != 0) {
errmsg = "predefined DSA parameters not supported";
goto error;
}
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &p);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &g);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &q);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &y);
pos += sshcom_read_mpint(ciphertext+pos, cipherlen-pos, &x);
if (!x.start) {
errmsg = "key data did not contain five integers";
goto error;
}
alg = &ssh_dss;
pos = 0;
pos += put_string(blob+pos, "ssh-dss", 7);
pos += put_mp(blob+pos, p.start, p.bytes);
pos += put_mp(blob+pos, q.start, q.bytes);
pos += put_mp(blob+pos, g.start, g.bytes);
pos += put_mp(blob+pos, y.start, y.bytes);
publen = pos;
pos += put_mp(blob+pos, x.start, x.bytes);
privlen = pos - publen;
}
assert(privlen > 0); /* should have bombed by now if not */
retkey = snew(struct ssh2_userkey);
retkey->alg = alg;
retkey->data = alg->createkey(alg, blob, publen, blob+publen, privlen);
if (!retkey->data) {
sfree(retkey);
errmsg = "unable to create key data structure";
goto error;
}
retkey->comment = dupstr(key->comment);
errmsg = NULL; /* no error */
ret = retkey;
error:
if (blob) {
smemclr(blob, blobsize);
sfree(blob);
}
smemclr(key->keyblob, key->keyblob_size);
sfree(key->keyblob);
smemclr(key, sizeof(*key));
sfree(key);
if (errmsg_p) *errmsg_p = errmsg;
return ret;
}
int sshcom_write(const Filename *filename, struct ssh2_userkey *key,
char *passphrase)
{
unsigned char *pubblob, *privblob;
int publen, privlen;
unsigned char *outblob;
int outlen;
struct mpint_pos numbers[6];
int nnumbers, initial_zero, pos, lenpos, i;
const char *type;
char *ciphertext;
int cipherlen;
int ret = 0;
FILE *fp;
/*
* Fetch the key blobs.
*/
pubblob = key->alg->public_blob(key->data, &publen);
privblob = key->alg->private_blob(key->data, &privlen);
outblob = NULL;
/*
* Find the sequence of integers to be encoded into the OpenSSH
* key blob, and also decide on the header line.
*/
if (key->alg == &ssh_rsa) {
int pos;
struct mpint_pos n, e, d, p, q, iqmp;
/*
* These blobs were generated from inside PuTTY, so we needn't
* treat them as untrusted.
*/
pos = 4 + GET_32BIT(pubblob);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &e);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &n);
pos = 0;
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &d);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &p);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &q);
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &iqmp);
assert(e.start && iqmp.start); /* can't go wrong */
numbers[0] = e;
numbers[1] = d;
numbers[2] = n;
numbers[3] = iqmp;
numbers[4] = q;
numbers[5] = p;
nnumbers = 6;
initial_zero = 0;
type = "if-modn{sign{rsa-pkcs1-sha1},encrypt{rsa-pkcs1v2-oaep}}";
} else if (key->alg == &ssh_dss) {
int pos;
struct mpint_pos p, q, g, y, x;
/*
* These blobs were generated from inside PuTTY, so we needn't
* treat them as untrusted.
*/
pos = 4 + GET_32BIT(pubblob);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &p);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &q);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &g);
pos += ssh2_read_mpint(pubblob+pos, publen-pos, &y);
pos = 0;
pos += ssh2_read_mpint(privblob+pos, privlen-pos, &x);
assert(y.start && x.start); /* can't go wrong */
numbers[0] = p;
numbers[1] = g;
numbers[2] = q;
numbers[3] = y;
numbers[4] = x;
nnumbers = 5;
initial_zero = 1;
type = "dl-modp{sign{dsa-nist-sha1},dh{plain}}";
} else {
assert(0); /* zoinks! */
exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
}
/*
* Total size of key blob will be somewhere under 512 plus
* combined length of integers. We'll calculate the more
* precise size as we construct the blob.
*/
outlen = 512;
for (i = 0; i < nnumbers; i++)
outlen += 4 + numbers[i].bytes;
outblob = snewn(outlen, unsigned char);
/*
* Create the unencrypted key blob.
*/
pos = 0;
PUT_32BIT(outblob+pos, SSHCOM_MAGIC_NUMBER); pos += 4;
pos += 4; /* length field, fill in later */
pos += put_string(outblob+pos, type, strlen(type));
{
const char *ciphertype = passphrase ? "3des-cbc" : "none";
pos += put_string(outblob+pos, ciphertype, strlen(ciphertype));
}
lenpos = pos; /* remember this position */
pos += 4; /* encrypted-blob size */
pos += 4; /* encrypted-payload size */
if (initial_zero) {
PUT_32BIT(outblob+pos, 0);
pos += 4;
}
for (i = 0; i < nnumbers; i++)
pos += sshcom_put_mpint(outblob+pos,
numbers[i].start, numbers[i].bytes);
/* Now wrap up the encrypted payload. */
PUT_32BIT(outblob+lenpos+4, pos - (lenpos+8));
/* Pad encrypted blob to a multiple of cipher block size. */
if (passphrase) {
int padding = -(pos - (lenpos+4)) & 7;
while (padding--)
outblob[pos++] = random_byte();
}
ciphertext = (char *)outblob+lenpos+4;
cipherlen = pos - (lenpos+4);
assert(!passphrase || cipherlen % 8 == 0);
/* Wrap up the encrypted blob string. */
PUT_32BIT(outblob+lenpos, cipherlen);
/* And finally fill in the total length field. */
PUT_32BIT(outblob+4, pos);
assert(pos < outlen);
/*
* Encrypt the key.
*/
if (passphrase) {
/*
* Derive encryption key from passphrase and iv/salt:
*
* - let block A equal MD5(passphrase)
* - let block B equal MD5(passphrase || A)
* - block C would be MD5(passphrase || A || B) and so on
* - encryption key is the first N bytes of A || B
*/
struct MD5Context md5c;
unsigned char keybuf[32], iv[8];
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Final(keybuf, &md5c);
MD5Init(&md5c);
MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase));
MD5Update(&md5c, keybuf, 16);
MD5Final(keybuf+16, &md5c);
/*
* Now decrypt the key blob.
*/
memset(iv, 0, sizeof(iv));
des3_encrypt_pubkey_ossh(keybuf, iv, (unsigned char *)ciphertext,
cipherlen);
smemclr(&md5c, sizeof(md5c));
smemclr(keybuf, sizeof(keybuf));
}
/*
* And save it. We'll use Unix line endings just in case it's
* subsequently transferred in binary mode.
*/
fp = f_open(filename, "wb", TRUE); /* ensure Unix line endings */
if (!fp)
goto error;
fputs("---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
fprintf(fp, "Comment: \"");
/*
* Comment header is broken with backslash-newline if it goes
* over 70 chars. Although it's surrounded by quotes, it
* _doesn't_ escape backslashes or quotes within the string.
* Don't ask me, I didn't design it.
*/
{
int slen = 60; /* starts at 60 due to "Comment: " */
char *c = key->comment;
while ((int)strlen(c) > slen) {
fprintf(fp, "%.*s\\\n", slen, c);
c += slen;
slen = 70; /* allow 70 chars on subsequent lines */
}
fprintf(fp, "%s\"\n", c);
}
base64_encode(fp, outblob, pos, 70);
fputs("---- END SSH2 ENCRYPTED PRIVATE KEY ----\n", fp);
fclose(fp);
ret = 1;
error:
if (outblob) {
smemclr(outblob, outlen);
sfree(outblob);
}
if (privblob) {
smemclr(privblob, privlen);
sfree(privblob);
}
if (pubblob) {
smemclr(pubblob, publen);
sfree(pubblob);
}
return ret;
}