Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
#ifndef PUTTY_SSH2CONNECTION_H
|
|
|
|
#define PUTTY_SSH2CONNECTION_H
|
|
|
|
|
|
|
|
struct outstanding_channel_request;
|
|
|
|
struct outstanding_global_request;
|
|
|
|
|
|
|
|
struct ssh2_connection_state {
|
|
|
|
int crState;
|
|
|
|
|
|
|
|
ssh_sharing_state *connshare;
|
|
|
|
char *peer_verstring;
|
|
|
|
|
|
|
|
mainchan *mainchan;
|
|
|
|
SshChannel *mainchan_sc;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool ldisc_opts[LD_N_OPTIONS];
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
int session_attempt, session_status;
|
|
|
|
int term_width, term_height;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool want_user_input;
|
2021-09-14 13:00:05 +00:00
|
|
|
bufchain *user_input;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool ssh_is_simple;
|
|
|
|
bool persistent;
|
Fix premature exit if 'plink -shareexists' happens early.
A user reported a phenomenon where running 'plink -shareexists' very
early in the connection would cause the receiving upstream PuTTY to
exit cleanly with the message 'All channels closed' in the log.
That wasn't hard to track down: that happens as a result of the
connection layer callback sharing_no_more_downstreams(), which causes
the connection layer to check whether it has any channels left open,
and if not, to terminate the connection on the grounds that everything
has finished. But it's premature to draw that conclusion if the reason
no channels are open if we haven't _started_ yet! Now we have a
'started' flag which is set when we initialise mainchan, and the
'we're all done now' check will never fire before that flag is set.
But in the course of investigating that, I found a second problem in
the same area: at an even earlier stage of an SSH connection, the
connshare system doesn't _even_ have the real ConnectionLayer pointer
yet. Instead, it has a pointer to a dummy one provided by the
top-level ssh.c, which contains a NULL vtable pointer. So if it calls
sharing_no_more_downstreams on _that_ ConnectionLayer, it will
dereference NULL and crash. So I've filled in cl_dummy's vtable
pointer with a trivial vtable, containing only the one callback
sharing_no_more_downstreams, which itself is a no-op function.
Hopefully that should all be stable now.
2021-02-21 10:11:13 +00:00
|
|
|
bool started;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
Conf *conf;
|
|
|
|
|
2019-09-08 19:29:00 +00:00
|
|
|
tree234 *channels; /* indexed by local id */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool all_channels_throttled;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool X11_fwd_enabled;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
tree234 *x11authtree;
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool got_pty;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
tree234 *rportfwds;
|
|
|
|
PortFwdManager *portfwdmgr;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool portfwdmgr_configured;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
2019-03-10 14:42:33 +00:00
|
|
|
prompts_t *antispoof_prompt;
|
Richer data type for interactive prompt results.
All the seat functions that request an interactive prompt of some kind
to the user - both the main seat_get_userpass_input and the various
confirmation dialogs for things like host keys - were using a simple
int return value, with the general semantics of 0 = "fail", 1 =
"proceed" (and in the case of seat_get_userpass_input, answers to the
prompts were provided), and -1 = "request in progress, wait for a
callback".
In this commit I change all those functions' return types to a new
struct called SeatPromptResult, whose primary field is an enum
replacing those simple integer values.
The main purpose is that the enum has not three but _four_ values: the
"fail" result has been split into 'user abort' and 'software abort'.
The distinction is that a user abort occurs as a result of an
interactive UI action, such as the user clicking 'cancel' in a dialog
box or hitting ^D or ^C at a terminal password prompt - and therefore,
there's no need to display an error message telling the user that the
interactive operation has failed, because the user already knows,
because they _did_ it. 'Software abort' is from any other cause, where
PuTTY is the first to know there was a problem, and has to tell the
user.
We already had this 'user abort' vs 'software abort' distinction in
other parts of the code - the SSH backend has separate termination
functions which protocol layers can call. But we assumed that any
failure from an interactive prompt request fell into the 'user abort'
category, which is not true. A couple of examples: if you configure a
host key fingerprint in your saved session via the SSH > Host keys
pane, and the server presents a host key that doesn't match it, then
verify_ssh_host_key would report that the user had aborted the
connection, and feel no need to tell the user what had gone wrong!
Similarly, if a password provided on the command line was not
accepted, then (after I fixed the semantics of that in the previous
commit) the same wrong handling would occur.
So now, those Seat prompt functions too can communicate whether the
user or the software originated a connection abort. And in the latter
case, we also provide an error message to present to the user. Result:
in those two example cases (and others), error messages should no
longer go missing.
Implementation note: to avoid the hassle of having the error message
in a SeatPromptResult being a dynamically allocated string (and hence,
every recipient of one must always check whether it's non-NULL and
free it on every exit path, plus being careful about copying the
struct around), I've instead arranged that the structure contains a
function pointer and a couple of parameters, so that the string form
of the message can be constructed on demand. That way, the only users
who need to free it are the ones who actually _asked_ for it in the
first place, which is a much smaller set.
(This is one of the rare occasions that I regret not having C++'s
extra features available in this code base - a unique_ptr or
shared_ptr to a string would have been just the thing here, and the
compiler would have done all the hard work for me of remembering where
to insert the frees!)
2021-12-28 17:52:00 +00:00
|
|
|
SeatPromptResult antispoof_ret;
|
2019-03-10 14:42:33 +00:00
|
|
|
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
const SftpServerVtable *sftpserver_vt;
|
2019-03-28 18:29:13 +00:00
|
|
|
const SshServerConfig *ssc;
|
Add an SFTP server to the SSH server code.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
2018-10-20 21:10:32 +00:00
|
|
|
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
/*
|
|
|
|
* These store the list of global requests that we're waiting for
|
|
|
|
* replies to. (REQUEST_FAILURE doesn't come with any indication
|
|
|
|
* of what message caused it, so we have to keep track of the
|
|
|
|
* queue ourselves.)
|
|
|
|
*/
|
|
|
|
struct outstanding_global_request *globreq_head, *globreq_tail;
|
|
|
|
|
|
|
|
ConnectionLayer cl;
|
|
|
|
PacketProtocolLayer ppl;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef void (*gr_handler_fn_t)(struct ssh2_connection_state *s,
|
|
|
|
PktIn *pktin, void *ctx);
|
|
|
|
void ssh2_queue_global_request_handler(
|
|
|
|
struct ssh2_connection_state *s, gr_handler_fn_t handler, void *ctx);
|
|
|
|
|
|
|
|
struct ssh2_channel {
|
|
|
|
struct ssh2_connection_state *connlayer;
|
|
|
|
|
|
|
|
unsigned remoteid, localid;
|
|
|
|
int type;
|
|
|
|
/* True if we opened this channel but server hasn't confirmed. */
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool halfopen;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
/* Bitmap of whether we've sent/received CHANNEL_EOF and
|
|
|
|
* CHANNEL_CLOSE. */
|
|
|
|
#define CLOSES_SENT_EOF 1
|
|
|
|
#define CLOSES_SENT_CLOSE 2
|
|
|
|
#define CLOSES_RCVD_EOF 4
|
|
|
|
#define CLOSES_RCVD_CLOSE 8
|
|
|
|
int closes;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This flag indicates that an EOF is pending on the outgoing side
|
|
|
|
* of the channel: that is, wherever we're getting the data for
|
|
|
|
* this channel has sent us some data followed by EOF. We can't
|
|
|
|
* actually send the EOF until we've finished sending the data, so
|
|
|
|
* we set this flag instead to remind us to do so once our buffer
|
|
|
|
* is clear.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool pending_eof;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* True if this channel is causing the underlying connection to be
|
|
|
|
* throttled.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool throttling_conn;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* True if we currently have backed-up data on the direction of
|
|
|
|
* this channel pointing out of the SSH connection, and therefore
|
|
|
|
* would prefer the 'Channel' implementation not to read further
|
|
|
|
* local input if possible.
|
|
|
|
*/
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool throttled_by_backlog;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
2018-10-20 20:41:28 +00:00
|
|
|
bufchain outbuffer, errbuffer;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
unsigned remwindow, remmaxpkt;
|
|
|
|
/* locwindow is signed so we can cope with excess data. */
|
|
|
|
int locwindow, locmaxwin;
|
|
|
|
/*
|
|
|
|
* remlocwin is the amount of local window that we think
|
|
|
|
* the remote end had available to it after it sent the
|
|
|
|
* last data packet or window adjust ack.
|
|
|
|
*/
|
|
|
|
int remlocwin;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These store the list of channel requests that we're waiting for
|
|
|
|
* replies to. (CHANNEL_FAILURE doesn't come with any indication
|
|
|
|
* of what message caused it, so we have to keep track of the
|
|
|
|
* queue ourselves.)
|
|
|
|
*/
|
|
|
|
struct outstanding_channel_request *chanreq_head, *chanreq_tail;
|
|
|
|
|
|
|
|
enum { THROTTLED, UNTHROTTLING, UNTHROTTLED } throttle_state;
|
|
|
|
|
|
|
|
ssh_sharing_connstate *sharectx; /* sharing context, if this is a
|
|
|
|
* downstream channel */
|
|
|
|
Channel *chan; /* handle the client side of this channel, if not */
|
|
|
|
SshChannel sc; /* entry point for chan to talk back to */
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef void (*cr_handler_fn_t)(struct ssh2_channel *, PktIn *, void *);
|
|
|
|
|
|
|
|
void ssh2_channel_init(struct ssh2_channel *c);
|
|
|
|
PktOut *ssh2_chanreq_init(struct ssh2_channel *c, const char *type,
|
|
|
|
cr_handler_fn_t handler, void *ctx);
|
|
|
|
|
|
|
|
typedef enum ChanopenOutcome {
|
|
|
|
CHANOPEN_RESULT_FAILURE,
|
|
|
|
CHANOPEN_RESULT_SUCCESS,
|
|
|
|
CHANOPEN_RESULT_DOWNSTREAM,
|
|
|
|
} ChanopenOutcome;
|
|
|
|
|
|
|
|
typedef struct ChanopenResult {
|
|
|
|
ChanopenOutcome outcome;
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
char *wire_message; /* must be freed by recipient */
|
|
|
|
unsigned reason_code;
|
|
|
|
} failure;
|
|
|
|
struct {
|
|
|
|
Channel *channel;
|
|
|
|
} success;
|
|
|
|
struct {
|
|
|
|
ssh_sharing_connstate *share_ctx;
|
|
|
|
} downstream;
|
|
|
|
} u;
|
|
|
|
} ChanopenResult;
|
|
|
|
|
|
|
|
PktOut *ssh2_chanopen_init(struct ssh2_channel *c, const char *type);
|
|
|
|
|
|
|
|
PktOut *ssh2_portfwd_chanopen(
|
|
|
|
struct ssh2_connection_state *s, struct ssh2_channel *c,
|
|
|
|
const char *hostname, int port,
|
2024-06-26 05:35:40 +00:00
|
|
|
const char *description, const SocketEndpointInfo *peerinfo);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
|
|
|
struct ssh_rportfwd *ssh2_rportfwd_alloc(
|
|
|
|
ConnectionLayer *cl,
|
|
|
|
const char *shost, int sport, const char *dhost, int dport,
|
|
|
|
int addressfamily, const char *log_description, PortFwdRecord *pfr,
|
|
|
|
ssh_sharing_connstate *share_ctx);
|
|
|
|
void ssh2_rportfwd_remove(
|
|
|
|
ConnectionLayer *cl, struct ssh_rportfwd *rpf);
|
|
|
|
SshChannel *ssh2_session_open(ConnectionLayer *cl, Channel *chan);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
SshChannel *ssh2_serverside_x11_open(
|
2024-06-26 05:35:40 +00:00
|
|
|
ConnectionLayer *cl, Channel *chan, const SocketEndpointInfo *pi);
|
Add an actual SSH server program.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
2018-10-20 21:09:54 +00:00
|
|
|
SshChannel *ssh2_serverside_agent_open(ConnectionLayer *cl, Channel *chan);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
|
2018-10-20 20:48:49 +00:00
|
|
|
void ssh2channel_send_exit_status(SshChannel *c, int status);
|
|
|
|
void ssh2channel_send_exit_signal(
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
SshChannel *c, ptrlen signame, bool core_dumped, ptrlen msg);
|
2018-10-20 20:48:49 +00:00
|
|
|
void ssh2channel_send_exit_signal_numeric(
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
SshChannel *c, int signum, bool core_dumped, ptrlen msg);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
void ssh2channel_request_x11_forwarding(
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
SshChannel *c, bool want_reply, const char *authproto,
|
|
|
|
const char *authdata, int screen_number, bool oneshot);
|
|
|
|
void ssh2channel_request_agent_forwarding(SshChannel *c, bool want_reply);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
void ssh2channel_request_pty(
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
SshChannel *c, bool want_reply, Conf *conf, int w, int h);
|
|
|
|
bool ssh2channel_send_env_var(
|
|
|
|
SshChannel *c, bool want_reply, const char *var, const char *value);
|
|
|
|
void ssh2channel_start_shell(SshChannel *c, bool want_reply);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
void ssh2channel_start_command(
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
SshChannel *c, bool want_reply, const char *command);
|
|
|
|
bool ssh2channel_start_subsystem(
|
|
|
|
SshChannel *c, bool want_reply, const char *subsystem);
|
|
|
|
bool ssh2channel_send_env_var(
|
|
|
|
SshChannel *c, bool want_reply, const char *var, const char *value);
|
|
|
|
bool ssh2channel_send_serial_break(
|
|
|
|
SshChannel *c, bool want_reply, int length);
|
|
|
|
bool ssh2channel_send_signal(
|
|
|
|
SshChannel *c, bool want_reply, const char *signame);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
void ssh2channel_send_terminal_size_change(SshChannel *c, int w, int h);
|
|
|
|
|
|
|
|
#define CHANOPEN_RETURN_FAILURE(code, msgparams) do \
|
|
|
|
{ \
|
|
|
|
ChanopenResult toret; \
|
|
|
|
toret.outcome = CHANOPEN_RESULT_FAILURE; \
|
|
|
|
toret.u.failure.reason_code = code; \
|
|
|
|
toret.u.failure.wire_message = dupprintf msgparams; \
|
|
|
|
return toret; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define CHANOPEN_RETURN_SUCCESS(chan) do \
|
|
|
|
{ \
|
|
|
|
ChanopenResult toret; \
|
|
|
|
toret.outcome = CHANOPEN_RESULT_SUCCESS; \
|
|
|
|
toret.u.success.channel = chan; \
|
|
|
|
return toret; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define CHANOPEN_RETURN_DOWNSTREAM(shctx) do \
|
|
|
|
{ \
|
|
|
|
ChanopenResult toret; \
|
|
|
|
toret.outcome = CHANOPEN_RESULT_DOWNSTREAM; \
|
|
|
|
toret.u.downstream.share_ctx = shctx; \
|
|
|
|
return toret; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
ChanopenResult ssh2_connection_parse_channel_open(
|
|
|
|
struct ssh2_connection_state *s, ptrlen type,
|
|
|
|
PktIn *pktin, SshChannel *sc);
|
|
|
|
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 19:23:19 +00:00
|
|
|
bool ssh2_connection_parse_global_request(
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
struct ssh2_connection_state *s, ptrlen type, PktIn *pktin);
|
|
|
|
|
2019-03-10 14:42:33 +00:00
|
|
|
bool ssh2_connection_need_antispoof_prompt(struct ssh2_connection_state *s);
|
|
|
|
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 16:57:37 +00:00
|
|
|
#endif /* PUTTY_SSH2CONNECTION_H */
|