1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
putty-source/utils/tempseat.c

431 lines
14 KiB
C
Raw Normal View History

Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
/*
* Implementation of the Seat trait that buffers output and other
* events until it can give them back to a real Seat.
*
* This is used by the SSH proxying code, which temporarily takes over
* the real user-facing Seat so that it can issue host key warnings,
* password prompts etc for the proxy SSH connection. While it's got
* the real Seat, it gives the primary connection's backend one of
* these temporary Seats in the interim, so that if the backend wants
* to send some kind of initial output, or start by reconfiguring the
* trust status, or what have you, then it can do that without having
* to keep careful track of the fact that its Seat is out on loan.
*/
#include "putty.h"
struct output_chunk {
struct output_chunk *next;
SeatOutputType type;
size_t size;
};
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
typedef struct TempSeat TempSeat;
struct TempSeat {
Seat *realseat;
/*
* Single bufchain to hold all the buffered output, regardless of
* its type.
*/
bufchain output;
/*
* List of pieces of that bufchain that are intended for one or
* another output destination
*/
struct output_chunk *outchunk_head, *outchunk_tail;
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
bool seen_session_started;
bool seen_remote_exit;
bool seen_remote_disconnect;
bool seen_update_specials_menu;
bool seen_echoedit_update, echoing, editing;
bool seen_trust_status, trusted;
Seat seat;
};
/* ----------------------------------------------------------------------
* Methods we can usefully buffer, and pass their results on to the
* real Seat in tempseat_flush().
*/
static size_t tempseat_output(Seat *seat, SeatOutputType type,
const void *data, size_t len)
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
{
TempSeat *ts = container_of(seat, TempSeat, seat);
bufchain_add(&ts->output, data, len);
if (!(ts->outchunk_tail && ts->outchunk_tail->type == type)) {
struct output_chunk *new_chunk = snew(struct output_chunk);
new_chunk->type = type;
new_chunk->size = 0;
new_chunk->next = NULL;
if (ts->outchunk_tail)
ts->outchunk_tail->next = new_chunk;
else
ts->outchunk_head = new_chunk;
ts->outchunk_tail = new_chunk;
}
ts->outchunk_tail->size += len;
return bufchain_size(&ts->output);
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
}
static void tempseat_notify_session_started(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_session_started = true;
}
static void tempseat_notify_remote_exit(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_remote_exit = true;
}
static void tempseat_notify_remote_disconnect(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_remote_disconnect = true;
}
static void tempseat_update_specials_menu(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_update_specials_menu = true;
}
static void tempseat_echoedit_update(Seat *seat, bool echoing, bool editing)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_echoedit_update = true;
ts->echoing = echoing;
ts->editing = editing;
}
static void tempseat_set_trust_status(Seat *seat, bool trusted)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
ts->seen_trust_status = true;
ts->trusted = trusted;
}
/* ----------------------------------------------------------------------
* Methods we can safely pass straight on to the real Seat, usually
* (but not in every case) because they're read-only queries.
*/
static char *tempseat_get_ttymode(Seat *seat, const char *mode)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_get_ttymode(ts->realseat, mode);
}
static void tempseat_set_busy_status(Seat *seat, BusyStatus status)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
/*
* set_busy_status is generally called when something is about to
* do some single-threaded, event-loop blocking computation. This
* _shouldn't_ happen in a backend while it's waiting for a
* network connection to be made, but if for some reason it were
* to, there's no reason we can't just pass this straight to the
* real seat, because we expect that it will mark itself busy,
* compute, and mark itself unbusy, all between yields to the
* event loop that might give whatever else is using the real Seat
* an opportunity to do anything.
*/
seat_set_busy_status(ts->realseat, status);
}
static bool tempseat_is_utf8(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_is_utf8(ts->realseat);
}
static const char *tempseat_get_x_display(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_get_x_display(ts->realseat);
}
static bool tempseat_get_windowid(Seat *seat, long *id_out)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_get_windowid(ts->realseat, id_out);
}
static bool tempseat_get_window_pixel_size(Seat *seat, int *width, int *height)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_get_window_pixel_size(ts->realseat, width, height);
}
static StripCtrlChars *tempseat_stripctrl_new(
Seat *seat, BinarySink *bs_out, SeatInteractionContext sic)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_stripctrl_new(ts->realseat, bs_out, sic);
}
static bool tempseat_verbose(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_verbose(ts->realseat);
}
static bool tempseat_interactive(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_interactive(ts->realseat);
}
static bool tempseat_get_cursor_position(Seat *seat, int *x, int *y)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_get_cursor_position(ts->realseat, x, y);
}
static bool tempseat_can_set_trust_status(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_can_set_trust_status(ts->realseat);
}
New Seat query, has_mixed_input_stream(). (TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
static bool tempseat_has_mixed_input_stream(Seat *seat)
{
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_has_mixed_input_stream(ts->realseat);
}
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
static const SeatDialogPromptDescriptions *tempseat_prompt_descriptions(
Seat *seat)
{
/* It might be OK to put this in the 'unreachable' category, but I
* think it's equally good to put it here, which allows for
* someone _preparing_ a prompt right now that they intend to
* present once the TempSeat has given way to the real one. */
TempSeat *ts = container_of(seat, TempSeat, seat);
return seat_prompt_descriptions(ts->realseat);
}
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
/* ----------------------------------------------------------------------
* Methods that should never be called on a TempSeat, so we can put an
* unreachable() in them.
*
* A backend in possession of a TempSeat ought to be sitting and
* patiently waiting for a network connection attempt to either
* succeed or fail. And it should be aware of the possibility that the
* proxy setup code to which it has lent the real Seat might need to
* present interactive prompts - that's the whole point of lending out
* the Seat in the first place - so it absolutely shouldn't get any
* ideas about issuing some kind of prompt of its own while it waits
* for the network connection.
*/
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
static SeatPromptResult tempseat_get_userpass_input(Seat *seat, prompts_t *p)
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
{
/*
* Interactive prompts of this nature are a thing that a backend
* MUST NOT do while not in possession of the real Seat, because
* the whole point of temporarily lending the real Seat to
* something else is that so it can have a clear field to do
* interactive stuff of its own while making a network connection.
*/
unreachable("get_userpass_input should never be called on TempSeat");
}
static size_t tempseat_banner(Seat *seat, const void *data, size_t len)
{
unreachable("banner should never be called on TempSeat");
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
static SeatPromptResult tempseat_confirm_ssh_host_key(
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
Seat *seat, const char *host, int port, const char *keytype,
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
char *keystr, SeatDialogText *text, HelpCtx helpctx,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
{
Reorganise host key checking and confirmation. Previously, checking the host key against the persistent cache managed by the storage.h API was done as part of the seat_verify_ssh_host_key method, i.e. separately by each Seat. Now that check is done by verify_ssh_host_key(), which is a new function in ssh/common.c that centralises all the parts of host key checking that don't need an interactive prompt. It subsumes the previous verify_ssh_manual_host_key() that checked against the Conf, and it does the check against the storage API that each Seat was previously doing separately. If it can't confirm or definitively reject the host key by itself, _then_ it calls out to the Seat, once an interactive prompt is definitely needed. The main point of doing this is so that when SshProxy forwards a Seat call from the proxy SSH connection to the primary Seat, it won't print an announcement of which connection is involved unless it's actually going to do something interactive. (Not that we're printing those announcements _yet_ anyway, but this is a piece of groundwork that works towards doing so.) But while I'm at it, I've also taken the opportunity to clean things up a bit by renaming functions sensibly. Previously we had three very similarly named functions verify_ssh_manual_host_key(), SeatVtable's 'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now the Seat method is called 'confirm' rather than 'verify' (since its job is now always to print an interactive prompt, so it looks more like the other confirm_foo methods), and the storage.h function is called check_stored_host_key(), which goes better with store_host_key and avoids having too many functions with similar names. And the 'manual' function is subsumed into the new centralised code, so there's now just *one* host key function with 'verify' in the name. Several functions are reindented in this commit. Best viewed with whitespace changes ignored.
2021-10-25 17:12:17 +00:00
unreachable("confirm_ssh_host_key should never be called on TempSeat");
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
static SeatPromptResult tempseat_confirm_weak_crypto_primitive(
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
Seat *seat, const char *algtype, const char *algname,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
{
unreachable("confirm_weak_crypto_primitive "
"should never be called on TempSeat");
}
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
static SeatPromptResult tempseat_confirm_weak_cached_hostkey(
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
Seat *seat, const char *algname, const char *betteralgs,
Richer data type for interactive prompt results. All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!)
2021-12-28 17:52:00 +00:00
void (*callback)(void *ctx, SeatPromptResult result), void *ctx)
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
{
unreachable("confirm_weak_cached_hostkey "
"should never be called on TempSeat");
}
static void tempseat_connection_fatal(Seat *seat, const char *message)
{
/*
* Fatal errors are another thing a backend should not have any
* reason to encounter while waiting to hear back about its
* network connection setup.
*
* Also, if a backend _did_ call this, it would be hellish to
* unpick all the error handling. Just passing on the fatal error
* to the real Seat wouldn't be good enough: what about freeing
* all the various things that are confusingly holding pointers to
* each other? Better to leave this as an assertion-failure level
* issue, so that if it does ever happen by accident, we'll know
* it's a bug.
*/
unreachable("connection_fatal should never be called on TempSeat");
}
static bool tempseat_eof(Seat *seat)
{
/*
* EOF is _very nearly_ something that we could buffer, and pass
* on to the real Seat at flush time. The only difficulty is that
* sometimes the front end wants to respond to an incoming EOF by
* instructing the back end to send an outgoing one, which it does
* by returning a bool from its eof method.
*
* So we'd have to arrange that tempseat_flush caught that return
* value and passed it on to the calling backend. And then every
* backend would have to deal with tempseat_flush maybe returning
* it an 'actually, please start closing down now' indication,
* which could only happen _in theory_, if it had for some reason
* called seat_eof on the TempSeat.
*
* But in fact, we don't expect back ends to call seat_eof on the
* TempSeat in the first place, so all of that effort would be a
* total waste. Hence, we'll put EOF in the category of things we
* expect backends never to do while the real Seat is out on loan.
*/
unreachable("eof should never be called on TempSeat");
}
/* ----------------------------------------------------------------------
* Done with the TempSeat methods. Here's the vtable definition and
* the main setup/teardown code.
*/
static const struct SeatVtable tempseat_vt = {
.output = tempseat_output,
.eof = tempseat_eof,
.sent = nullseat_sent,
.banner = tempseat_banner,
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
.get_userpass_input = tempseat_get_userpass_input,
.notify_session_started = tempseat_notify_session_started,
.notify_remote_exit = tempseat_notify_remote_exit,
.notify_remote_disconnect = tempseat_notify_remote_disconnect,
.connection_fatal = tempseat_connection_fatal,
.update_specials_menu = tempseat_update_specials_menu,
.get_ttymode = tempseat_get_ttymode,
.set_busy_status = tempseat_set_busy_status,
Reorganise host key checking and confirmation. Previously, checking the host key against the persistent cache managed by the storage.h API was done as part of the seat_verify_ssh_host_key method, i.e. separately by each Seat. Now that check is done by verify_ssh_host_key(), which is a new function in ssh/common.c that centralises all the parts of host key checking that don't need an interactive prompt. It subsumes the previous verify_ssh_manual_host_key() that checked against the Conf, and it does the check against the storage API that each Seat was previously doing separately. If it can't confirm or definitively reject the host key by itself, _then_ it calls out to the Seat, once an interactive prompt is definitely needed. The main point of doing this is so that when SshProxy forwards a Seat call from the proxy SSH connection to the primary Seat, it won't print an announcement of which connection is involved unless it's actually going to do something interactive. (Not that we're printing those announcements _yet_ anyway, but this is a piece of groundwork that works towards doing so.) But while I'm at it, I've also taken the opportunity to clean things up a bit by renaming functions sensibly. Previously we had three very similarly named functions verify_ssh_manual_host_key(), SeatVtable's 'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now the Seat method is called 'confirm' rather than 'verify' (since its job is now always to print an interactive prompt, so it looks more like the other confirm_foo methods), and the storage.h function is called check_stored_host_key(), which goes better with store_host_key and avoids having too many functions with similar names. And the 'manual' function is subsumed into the new centralised code, so there's now just *one* host key function with 'verify' in the name. Several functions are reindented in this commit. Best viewed with whitespace changes ignored.
2021-10-25 17:12:17 +00:00
.confirm_ssh_host_key = tempseat_confirm_ssh_host_key,
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
.confirm_weak_crypto_primitive = tempseat_confirm_weak_crypto_primitive,
.confirm_weak_cached_hostkey = tempseat_confirm_weak_cached_hostkey,
Centralise most details of host-key prompting. The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now.
2022-07-07 16:25:15 +00:00
.prompt_descriptions = tempseat_prompt_descriptions,
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
.is_utf8 = tempseat_is_utf8,
.echoedit_update = tempseat_echoedit_update,
.get_x_display = tempseat_get_x_display,
.get_windowid = tempseat_get_windowid,
.get_window_pixel_size = tempseat_get_window_pixel_size,
.stripctrl_new = tempseat_stripctrl_new,
.set_trust_status = tempseat_set_trust_status,
.can_set_trust_status = tempseat_can_set_trust_status,
New Seat query, has_mixed_input_stream(). (TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to.
2021-11-06 14:33:03 +00:00
.has_mixed_input_stream = tempseat_has_mixed_input_stream,
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
.verbose = tempseat_verbose,
.interactive = tempseat_interactive,
.get_cursor_position = tempseat_get_cursor_position,
};
Seat *tempseat_new(Seat *realseat)
{
TempSeat *ts = snew(TempSeat);
memset(ts, 0, sizeof(*ts));
ts->seat.vt = &tempseat_vt;
ts->realseat = realseat;
bufchain_init(&ts->output);
ts->outchunk_head = ts->outchunk_tail = NULL;
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
return &ts->seat;
}
bool is_tempseat(Seat *seat)
{
return seat->vt == &tempseat_vt;
}
Seat *tempseat_get_real(Seat *seat)
{
assert(seat->vt == &tempseat_vt);
TempSeat *ts = container_of(seat, TempSeat, seat);
return ts->realseat;
}
void tempseat_free(Seat *seat)
{
assert(seat->vt == &tempseat_vt);
TempSeat *ts = container_of(seat, TempSeat, seat);
bufchain_clear(&ts->output);
while (ts->outchunk_head) {
struct output_chunk *chunk = ts->outchunk_head;
ts->outchunk_head = chunk->next;
sfree(chunk);
}
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
sfree(ts);
}
void tempseat_flush(Seat *seat)
{
assert(seat->vt == &tempseat_vt);
TempSeat *ts = container_of(seat, TempSeat, seat);
/* Empty the output bufchains into the real seat, taking care to
* preserve both separation and interleaving */
while (bufchain_size(&ts->output)) {
ptrlen pl = bufchain_prefix(&ts->output);
assert(ts->outchunk_head);
struct output_chunk *chunk = ts->outchunk_head;
if (pl.len > chunk->size)
pl.len = chunk->size;
seat_output(ts->realseat, chunk->type, pl.ptr, pl.len);
bufchain_consume(&ts->output, pl.len);
chunk->size -= pl.len;
if (chunk->size == 0) {
ts->outchunk_head = chunk->next;
sfree(chunk);
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
}
}
/* That should have exactly emptied the output chunk list too */
assert(!ts->outchunk_head);
Allow new_connection to take an optional Seat. (NFC) This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit.
2021-09-13 16:17:20 +00:00
/* Pass on any other kinds of event we've buffered */
if (ts->seen_session_started)
seat_notify_session_started(ts->realseat);
if (ts->seen_remote_exit)
seat_notify_remote_exit(ts->realseat);
if (ts->seen_remote_disconnect)
seat_notify_remote_disconnect(ts->realseat);
if (ts->seen_update_specials_menu)
seat_update_specials_menu(ts->realseat);
if (ts->seen_echoedit_update)
seat_echoedit_update(ts->realseat, ts->echoing, ts->editing);
if (ts->seen_trust_status)
seat_set_trust_status(ts->realseat, ts->trusted);
}