1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00
putty-source/cmake/setup.cmake

131 lines
4.6 KiB
CMake
Raw Permalink Normal View History

Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
# Forcibly re-enable assertions, even if we're building in release
# mode. This is a security project - assertions may be enforcing
# security-critical constraints. A backstop #ifdef in defs.h should
# give a #error if this manoeuvre doesn't do what it needs to.
string(REPLACE "/DNDEBUG" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REPLACE "-DNDEBUG" "" CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE}")
string(REPLACE "/DNDEBUG" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
string(REPLACE "-DNDEBUG" "" CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO}")
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
set(PUTTY_IPV6 ON
CACHE BOOL "Build PuTTY with IPv6 support if possible")
set(PUTTY_DEBUG OFF
CACHE BOOL "Build PuTTY with debug() statements enabled")
set(PUTTY_FUZZING OFF
CACHE BOOL "Build PuTTY binaries suitable for fuzzing, NOT FOR REAL USE")
2021-04-17 19:44:50 +00:00
set(PUTTY_COVERAGE OFF
CACHE BOOL "Build PuTTY binaries suitable for code coverage analysis")
Build option to disable scrollback compression. This was requested by a downstream of the code, who wanted to change the time/space tradeoff in the terminal. I currently have no plans to change this setting for upstream PuTTY, although there is a cmake option for it just to make testing it easy. To avoid sprinkling ifdefs over the whole terminal code, the strategy is to keep the separate type 'compressed_scrollback_line', and turn it into a typedef for a 'termline *'. So compressline() becomes almost trivial, and decompressline() even more so. Memory management is the fiddly part. To make this work sensibly on both sides, I've broken up each of compressline() and decompressline() into two versions, one of which takes ownership of (and logically speaking frees) its input, and the other doesn't. So at call sites where a function was followed by a free, it's now calling the 'and_free' version of the function, and where the input object was reused afterwards, it's calling the 'no_free' version. This means that in different branches of the #if, I can make one function call the other or vice versa, and no call site is stuck with having to do things in a more roundabout way than necessary. The freeing of the _return_ value from decompressline() is handled for us, because termlines already have a 'temporary' flag which is set when they're returned from the decompressor, and anyone receiving a termline from lineptr() calls unlineptr() when they're finished with it, which will _conditionally_ free it, depending on that 'temporary' flag. So in the new mode, 'temporary' is never set at all, and all those unlineptr() calls do nothing. However, we also still need to free compressed lines properly when they're actually being thrown away (scrolled off the top of the scrollback, or cleaned up in term_free), and for that, I've made a new special-purpose free_compressed_line() function. (cherry picked from commit 5f2eff2fea10642a445c90d377d816fa5cace3d4)
2022-11-20 10:55:33 +00:00
set(PUTTY_COMPRESS_SCROLLBACK ON
# This is always on in production versions of PuTTY, but downstreams
# of the code have been known to find it a better tradeoff to
# disable it. So there's a #ifdef in terminal.c, and a cmake option
# to enable that ifdef just in case it needs testing or debugging.
CACHE BOOL "Store terminal scrollback in compressed form")
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
set(STRICT OFF
CACHE BOOL "Enable extra compiler warnings and make them errors")
include(FindGit)
set(GENERATED_SOURCES_DIR ${CMAKE_CURRENT_BINARY_DIR}${CMAKE_FILES_DIRECTORY})
set(GENERATED_LICENCE_H ${GENERATED_SOURCES_DIR}/licence.h)
set(INTERMEDIATE_LICENCE_H ${GENERATED_LICENCE_H}.tmp)
add_custom_command(OUTPUT ${INTERMEDIATE_LICENCE_H}
COMMAND ${CMAKE_COMMAND}
-DLICENCE_FILE=${CMAKE_SOURCE_DIR}/LICENCE
-DOUTPUT_FILE=${INTERMEDIATE_LICENCE_H}
-P ${CMAKE_SOURCE_DIR}/cmake/licence.cmake
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/licence.cmake ${CMAKE_SOURCE_DIR}/LICENCE)
add_custom_target(generated_licence_h
BYPRODUCTS ${GENERATED_LICENCE_H}
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${INTERMEDIATE_LICENCE_H} ${GENERATED_LICENCE_H}
DEPENDS ${INTERMEDIATE_LICENCE_H}
COMMENT "Updating licence.h")
set(GENERATED_COMMIT_C ${GENERATED_SOURCES_DIR}/cmake_commit.c)
set(INTERMEDIATE_COMMIT_C ${GENERATED_COMMIT_C}.tmp)
add_custom_target(check_git_commit
BYPRODUCTS ${INTERMEDIATE_COMMIT_C}
COMMAND ${CMAKE_COMMAND}
-DGIT_EXECUTABLE=${GIT_EXECUTABLE}
-DOUTPUT_FILE=${INTERMEDIATE_COMMIT_C}
-DOUTPUT_TYPE=header
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
-P ${CMAKE_SOURCE_DIR}/cmake/gitcommit.cmake
DEPENDS ${CMAKE_SOURCE_DIR}/cmake/gitcommit.cmake
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
COMMENT "Checking current git commit")
add_custom_target(cmake_commit_c
BYPRODUCTS ${GENERATED_COMMIT_C}
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${INTERMEDIATE_COMMIT_C} ${GENERATED_COMMIT_C}
DEPENDS check_git_commit ${INTERMEDIATE_COMMIT_C}
COMMENT "Updating cmake_commit.c")
if(CMAKE_VERSION VERSION_LESS 3.12)
function(add_compile_definitions)
foreach(i ${ARGN})
add_compile_options(-D${i})
endforeach()
endfunction()
endif()
function(add_sources_from_current_dir target)
set(sources)
foreach(i ${ARGN})
set(sources ${sources} ${CMAKE_CURRENT_SOURCE_DIR}/${i})
endforeach()
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
target_sources(${target} PRIVATE ${sources})
endfunction()
set(extra_dirs)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
if(CMAKE_SYSTEM_NAME MATCHES "Windows" OR WINELIB)
set(platform windows)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
else()
set(platform unix)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
endif()
Merge be_*.c into one ifdef-controlled module. This commit replaces all those fiddly little linking modules (be_all.c, be_none.c, be_ssh.c etc) with a single source file controlled by ifdefs, and introduces a function be_list() in setup.cmake that makes it easy to compile a version of it appropriate to each application. This is a net reduction in code according to 'git diff --stat', even though I've introduced more comments. It also gets rid of another pile of annoying little source files in the top-level directory that didn't deserve to take up so much room in 'ls'. More concretely, doing this has some maintenance advantages. Centralisation means less to maintain (e.g. n_ui_backends is worked out once in a way that makes sense everywhere), and also, 'appname' can now be reliably set per program. Previously, some programs got the wrong appname due to sharing the same linking module (e.g. Plink had appname="PuTTY"), which was a latent bug that would have manifested if I'd wanted to reuse the same string in another context. One thing I've changed in this rework is that Windows pterm no longer has the ConPTY backend in its backends[]: it now has an empty one. The special be_conpty.c module shouldn't really have been there in the first place: it was used in the very earliest uncommitted drafts of the ConPTY work, where I was using another method of selecting that backend, but now that Windows pterm has a dedicated backend_vt_from_conf() that refers to conpty_backend by name, it has no need to live in backends[] at all, just as it doesn't have to in Unix pterm.
2021-11-26 17:58:55 +00:00
function(be_list TARGET NAME)
cmake_parse_arguments(OPT "SSH;SERIAL;OTHERBACKENDS" "" "" "${ARGN}")
add_library(${TARGET}-be-list OBJECT ${CMAKE_SOURCE_DIR}/be_list.c)
foreach(setting SSH SERIAL OTHERBACKENDS)
if(OPT_${setting})
target_compile_definitions(${TARGET}-be-list PRIVATE ${setting}=1)
else()
target_compile_definitions(${TARGET}-be-list PRIVATE ${setting}=0)
endif()
endforeach()
target_compile_definitions(${TARGET}-be-list PRIVATE APPNAME=${NAME})
target_sources(${TARGET} PRIVATE $<TARGET_OBJECTS:${TARGET}-be-list>)
endfunction()
include(cmake/platforms/${platform}.cmake)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
${GENERATED_SOURCES_DIR}
${platform}
${extra_dirs})
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
Side-channel tester: align memory allocations. While trying to get an upcoming piece of code through testsc, I had trouble - _yet again_ - with the way that control flow diverges inside the glibc implementations of functions like memcpy and memset, depending on the alignment of the input blocks _above_ the alignment guaranteed by malloc, so that doing the same sequence of malloc + memset can lead to different control flow. (I believe this is done either for cache performance reasons or SIMD alignment requirements, or both: on x86, some SIMD instructions require memory alignment beyond what malloc guarantees, which is also awkward for our x86 hardware crypto implementations.) My previous effort to normalise this problem out of sclog's log files worked by wrapping memset and all its synonyms that I could find. But this weekend, that failed for me, and the reason appears to be ifuncs. I'm aware of the great irony of committing code to a security project with a log message saying something vague about ifuncs, on the same weekend that it came to light that commits matching that description were one of the methods used to smuggle a backdoor into the XZ Utils project (CVE-2024-3094). So I'll bend over backwards to explain both what I think is going on, and why this _isn't_ a weird ifunc-related backdooring attempt: When I say I 'wrap' memset, I mean I use DynamoRIO's 'drwrap' API to arrange that the side-channel test rig calls a function of mine before and after each call to memset. The way drwrap works is to look up the symbol address in either the main program or a shared library; in this case, it's a shared library, namely libc.so. Then it intercepts call instructions with exactly that address as the target. Unfortunately, what _actually_ happens when the main program calls memset is more complicated. First, control goes to the PLT entry for memset (still in the main program). In principle, that loads a GOT entry containing the address of memset (filled in by ld.so), and jumps to it. But in fact the GOT entry varies its value through the program; on the first call, it points to a resolver function, whose job is to _find out_ the address of memset. And in the version of libc.so I'm currently running, that resolver is an STT_GNU_IFUNC indirection function, which tests the host CPU's capabilities, and chooses an actual implementation of memset depending on what it finds. (In my case, it looks as if it's picking one that makes extensive use of x86 SIMD.) To avoid the overhead of doing this on every call, the returned function pointer is then written into the main program's GOT entry for memset, overwriting the address of the resolver function, so that the _next_ call the main program makes through the same PLT entry will go directly to the memset variant that was chosen. And the problem is that, after this has happened, none of the new control flow ever goes near the _official_ address of memset, as read out of libc.so's dynamic symbol table by DynamoRIO. The PLT entry isn't at that address, and neither is the particular SIMD variant that the resolver ended up choosing. So now my wrapper on memset is never being invoked, and memset cheerfully generates different control flow in runs of my crypto code that testsc expects to be doing exactly the same thing as each other, and all my tests fail spuriously. My solution, at least for the moment, is to completely abandon the strategy of wrapping memset. Instead, let's just make it behave the same way every time, by forcing all the affected memory allocations to have extra-strict alignment. I found that 64-byte alignment is not good enough to eliminate memset-related test failures, but 128-byte alignment is. This would be tricky in itself, if it weren't for the fact that PuTTY already has its own wrapper function on malloc (for various reasons), which everything in our code already uses. So I can divert to C11's aligned_alloc() there. That in turn is done by adding a new #ifdef to utils/memory.c, and compiling it with that #ifdef into a new object library that is included in testsc, superseding the standard memory.o that would otherwise be pulled in from our 'utils' static library. With the previous memset-compensator removed, this means testsc is now dependent on having aligned_alloc() available. So we test for it at cmake time, and don't build testsc at all if it can't be found. This shouldn't bother anyone very much; aligned_alloc() is available on _my_ testsc platform, and if anyone else is trying to run this test suite at all, I expect it will be on something at least as new as that. (One awkward thing here is that we can only replace _new_ allocations with calls to aligned_alloc(): C11 provides no aligned version of realloc. Happily, this doesn't currently introduce any new problems in testsc. If it does, I might have to do something even more painful in future.) So, why isn't this an ifunc-related backdoor attempt? Because (and you can check all of this from the patch): 1. The memset-wrapping code exists entirely within the DynamoRIO plugin module that lives in test/sclog. That is not used in production, only for running the 'testsc' side-channel tester. 2. The memset-wrapping code is _removed_ by this patch, not added. 3. None of this code is dealing directly with ifuncs - only working around the unwanted effects on my test suite from the fact that they exist somewhere else and introduce awkward behaviour.
2024-04-01 07:48:36 +00:00
check_c_source_compiles("
#define _ISOC11_SOURCE
#include <stdlib.h>
int main(int argc, char **argv) {
void *p = aligned_alloc(128, 12345);
free(p);
}" HAVE_ALIGNED_ALLOC)
Replace mkfiles.pl with a CMake build system. This brings various concrete advantages over the previous system: - consistent support for out-of-tree builds on all platforms - more thorough support for Visual Studio IDE project files - support for Ninja-based builds, which is particularly useful on Windows where the alternative nmake has no parallel option - a really simple set of build instructions that work the same way on all the major platforms (look how much shorter README is!) - better decoupling of the project configuration from the toolchain configuration, so that my Windows cross-building doesn't need (much) special treatment in CMakeLists.txt - configure-time tests on Windows as well as Linux, so that a lot of ad-hoc #ifdefs second-guessing a particular feature's presence from the compiler version can now be replaced by tests of the feature itself Also some longer-term software-engineering advantages: - other people have actually heard of CMake, so they'll be able to produce patches to the new build setup more easily - unlike the old mkfiles.pl, CMake is not my personal problem to maintain - most importantly, mkfiles.pl was just a horrible pile of unmaintainable cruft, which even I found it painful to make changes to or to use, and desperately needed throwing in the bin. I've already thrown away all the variants of it I had in other projects of mine, and was only delaying this one so we could make the 0.75 release branch first. This change comes with a noticeable build-level restructuring. The previous Recipe worked by compiling every object file exactly once, and then making each executable by linking a precisely specified subset of the same object files. But in CMake, that's not the natural way to work - if you write the obvious command that puts the same source file into two executable targets, CMake generates a makefile that compiles it once per target. That can be an advantage, because it gives you the freedom to compile it differently in each case (e.g. with a #define telling it which program it's part of). But in a project that has many executable targets and had carefully contrived to _never_ need to build any module more than once, all it does is bloat the build time pointlessly! To avoid slowing down the build by a large factor, I've put most of the modules of the code base into a collection of static libraries organised vaguely thematically (SSH, other backends, crypto, network, ...). That means all those modules can still be compiled just once each, because once each library is built it's reused unchanged for all the executable targets. One upside of this library-based structure is that now I don't have to manually specify exactly which objects go into which programs any more - it's enough to specify which libraries are needed, and the linker will figure out the fine detail automatically. So there's less maintenance to do in CMakeLists.txt when the source code changes. But that reorganisation also adds fragility, because of the trad Unix linker semantics of walking along the library list once each, so that cyclic references between your libraries will provoke link errors. The current setup builds successfully, but I suspect it only just manages it. (In particular, I've found that MinGW is the most finicky on this score of the Windows compilers I've tried building with. So I've included a MinGW test build in the new-look Buildscr, because otherwise I think there'd be a significant risk of introducing MinGW-only build failures due to library search order, which wasn't a risk in the previous library-free build organisation.) In the longer term I hope to be able to reduce the risk of that, via gradual reorganisation (in particular, breaking up too-monolithic modules, to reduce the risk of knock-on references when you included a module for function A and it also contains function B with an unsatisfied dependency you didn't really need). Ideally I want to reach a state in which the libraries all have sensibly described purposes, a clearly documented (partial) order in which they're permitted to depend on each other, and a specification of what stubs you have to put where if you're leaving one of them out (e.g. nocrypto) and what callbacks you have to define in your non-library objects to satisfy dependencies from things low in the stack (e.g. out_of_memory()). One thing that's gone completely missing in this migration, unfortunately, is the unfinished MacOS port linked against Quartz GTK. That's because it turned out that I can't currently build it myself, on my own Mac: my previous installation of GTK had bit-rotted as a side effect of an Xcode upgrade, and I haven't yet been able to persuade jhbuild to make me a new one. So I can't even build the MacOS port with the _old_ makefiles, and hence, I have no way of checking that the new ones also work. I hope to bring that port back to life at some point, but I don't want it to block the rest of this change.
2021-04-10 14:21:11 +00:00
if(PUTTY_DEBUG)
add_compile_definitions(DEBUG)
endif()
if(PUTTY_FUZZING)
add_compile_definitions(FUZZING)
endif()
Build option to disable scrollback compression. This was requested by a downstream of the code, who wanted to change the time/space tradeoff in the terminal. I currently have no plans to change this setting for upstream PuTTY, although there is a cmake option for it just to make testing it easy. To avoid sprinkling ifdefs over the whole terminal code, the strategy is to keep the separate type 'compressed_scrollback_line', and turn it into a typedef for a 'termline *'. So compressline() becomes almost trivial, and decompressline() even more so. Memory management is the fiddly part. To make this work sensibly on both sides, I've broken up each of compressline() and decompressline() into two versions, one of which takes ownership of (and logically speaking frees) its input, and the other doesn't. So at call sites where a function was followed by a free, it's now calling the 'and_free' version of the function, and where the input object was reused afterwards, it's calling the 'no_free' version. This means that in different branches of the #if, I can make one function call the other or vice versa, and no call site is stuck with having to do things in a more roundabout way than necessary. The freeing of the _return_ value from decompressline() is handled for us, because termlines already have a 'temporary' flag which is set when they're returned from the decompressor, and anyone receiving a termline from lineptr() calls unlineptr() when they're finished with it, which will _conditionally_ free it, depending on that 'temporary' flag. So in the new mode, 'temporary' is never set at all, and all those unlineptr() calls do nothing. However, we also still need to free compressed lines properly when they're actually being thrown away (scrolled off the top of the scrollback, or cleaned up in term_free), and for that, I've made a new special-purpose free_compressed_line() function. (cherry picked from commit 5f2eff2fea10642a445c90d377d816fa5cace3d4)
2022-11-20 10:55:33 +00:00
if(NOT PUTTY_COMPRESS_SCROLLBACK)
set(NO_SCROLLBACK_COMPRESSION ON)
endif()
2021-04-17 19:44:50 +00:00
if(PUTTY_COVERAGE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fprofile-arcs -ftest-coverage -g ")
endif()