From 01d365b62615955e75db0b18d4564ee0170da65b Mon Sep 17 00:00:00 2001 From: Simon Tatham Date: Sun, 20 Feb 2011 14:59:00 +0000 Subject: [PATCH] Beginnings of a test suite for the bignum code. The output of testdata/bignum.py is twice the size of the rest of the PuTTY source put together, so I'm not checking it in. This reveals bugs in the new multiplication code, which I have yet to fix. [originally from svn r9097] --- sshbn.c | 181 +++++++++++++++++++++++++++++++++++++++++++++ testdata/bignum.py | 82 ++++++++++++++++++++ 2 files changed, 263 insertions(+) create mode 100644 testdata/bignum.py diff --git a/sshbn.c b/sshbn.c index 7368a431..20244e86 100644 --- a/sshbn.c +++ b/sshbn.c @@ -247,6 +247,9 @@ static void internal_mul(const BignumInt *a, const BignumInt *b, int midlen = botlen + 1; BignumInt *scratch; BignumDblInt carry; +#ifdef KARA_DEBUG + int i; +#endif /* * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping @@ -254,11 +257,40 @@ static void internal_mul(const BignumInt *a, const BignumInt *b, * place. */ +#ifdef KARA_DEBUG + printf("a1,a0 = 0x"); + for (i = 0; i < len; i++) { + if (i == toplen) printf(", 0x"); + printf("%0*x", BIGNUM_INT_BITS/4, a[i]); + } + printf("\n"); + printf("b1,b0 = 0x"); + for (i = 0; i < len; i++) { + if (i == toplen) printf(", 0x"); + printf("%0*x", BIGNUM_INT_BITS/4, b[i]); + } + printf("\n"); +#endif + /* a_1 b_1 */ internal_mul(a, b, c, toplen); +#ifdef KARA_DEBUG + printf("a1b1 = 0x"); + for (i = 0; i < 2*toplen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[i]); + } + printf("\n"); +#endif /* a_0 b_0 */ internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen); +#ifdef KARA_DEBUG + printf("a0b0 = 0x"); + for (i = 0; i < 2*botlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]); + } + printf("\n"); +#endif /* * We must allocate scratch space for the central coefficient, @@ -281,14 +313,35 @@ static void internal_mul(const BignumInt *a, const BignumInt *b, /* compute a_1 + a_0 */ scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen); +#ifdef KARA_DEBUG + printf("a1plusa0 = 0x"); + for (i = 0; i < midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]); + } + printf("\n"); +#endif /* compute b_1 + b_0 */ scratch[midlen] = internal_add(scratch+midlen+1, b+toplen, scratch+midlen+1, botlen); +#ifdef KARA_DEBUG + printf("b1plusb0 = 0x"); + for (i = 0; i < midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]); + } + printf("\n"); +#endif /* * Now we can do the third multiplication. */ internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen); +#ifdef KARA_DEBUG + printf("a1plusa0timesb1plusb0 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]); + } + printf("\n"); +#endif /* * Now we can reuse the first half of 'scratch' to compute the @@ -300,9 +353,23 @@ static void internal_mul(const BignumInt *a, const BignumInt *b, scratch[2*midlen - 2*toplen + j] = c[j]; scratch[1] = internal_add(scratch+2, c + 2*toplen, scratch+2, 2*botlen); +#ifdef KARA_DEBUG + printf("a1b1plusa0b0 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]); + } + printf("\n"); +#endif internal_sub(scratch + 2*midlen, scratch, scratch + 2*midlen, 2*midlen); +#ifdef KARA_DEBUG + printf("a1b0plusa0b1 = 0x"); + for (i = 0; i < 2*midlen; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]); + } + printf("\n"); +#endif /* * And now all we need to do is to add that middle coefficient @@ -320,6 +387,13 @@ static void internal_mul(const BignumInt *a, const BignumInt *b, c[j] = (BignumInt)carry; carry >>= BIGNUM_INT_BITS; } +#ifdef KARA_DEBUG + printf("ab = 0x"); + for (i = 0; i < 2*len; i++) { + printf("%0*x", BIGNUM_INT_BITS/4, c[i]); + } + printf("\n"); +#endif /* Free scratch. */ for (j = 0; j < 4 * midlen; j++) @@ -1531,3 +1605,110 @@ char *bignum_decimal(Bignum x) sfree(workspace); return ret; } + +#ifdef TESTBN + +#include +#include +#include + +/* + * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset + */ + +void modalfatalbox(char *p, ...) +{ + va_list ap; + fprintf(stderr, "FATAL ERROR: "); + va_start(ap, p); + vfprintf(stderr, p, ap); + va_end(ap); + fputc('\n', stderr); + exit(1); +} + +#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' ) + +int main(int argc, char **argv) +{ + char *buf; + int line = 0; + int passes = 0, fails = 0; + + while ((buf = fgetline(stdin)) != NULL) { + int maxlen = strlen(buf); + unsigned char *data = snewn(maxlen, unsigned char); + unsigned char *ptrs[4], *q; + int ptrnum; + char *bufp = buf; + + line++; + + q = data; + ptrnum = 0; + + while (*bufp) { + char *start, *end; + int i; + + while (*bufp && !isxdigit((unsigned char)*bufp)) + bufp++; + start = bufp; + + if (!*bufp) + break; + + while (*bufp && isxdigit((unsigned char)*bufp)) + bufp++; + end = bufp; + + if (ptrnum >= lenof(ptrs)) + break; + ptrs[ptrnum++] = q; + + for (i = -((end - start) & 1); i < end-start; i += 2) { + unsigned char val = (i < 0 ? 0 : fromxdigit(start[i])); + val = val * 16 + fromxdigit(start[i+1]); + *q++ = val; + } + + ptrs[ptrnum] = q; + } + + if (ptrnum == 3) { + Bignum a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); + Bignum b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]); + Bignum c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]); + Bignum p = bigmul(a, b); + + if (bignum_cmp(c, p) == 0) { + passes++; + } else { + char *as = bignum_decimal(a); + char *bs = bignum_decimal(b); + char *cs = bignum_decimal(c); + char *ps = bignum_decimal(p); + + printf("%d: fail: %s * %s gave %s expected %s\n", + line, as, bs, ps, cs); + fails++; + + sfree(as); + sfree(bs); + sfree(cs); + sfree(ps); + } + freebn(a); + freebn(b); + freebn(c); + freebn(p); + } + sfree(buf); + sfree(data); + } + + printf("passed %d failed %d total %d\n", passes, fails, passes+fails); + return fails != 0; +} + +#endif diff --git a/testdata/bignum.py b/testdata/bignum.py new file mode 100644 index 00000000..2c7fb4ee --- /dev/null +++ b/testdata/bignum.py @@ -0,0 +1,82 @@ +# Generate test cases for a bignum implementation. + +import sys +import mathlib + +def findprod(target, dir = +1, ratio=(1,1)): + # Return two numbers whose product is as close as we can get to + # 'target', with any deviation having the sign of 'dir', and in + # the same approximate ratio as 'ratio'. + + r = mathlib.sqrt(target * ratio[0] * ratio[1]) + a = r / ratio[1] + b = r / ratio[0] + if a*b * dir < target * dir: + a = a + 1 + b = b + 1 + assert a*b * dir >= target * dir + + best = (a,b,a*b) + + while 1: + improved = 0 + a, b = best[:2] + + terms = mathlib.confracr(a, b, output=None) + coeffs = [(1,0),(0,1)] + for t in terms: + coeffs.append((coeffs[-2][0]-t*coeffs[-1][0], + coeffs[-2][1]-t*coeffs[-1][1])) + for c in coeffs: + # a*c[0]+b*c[1] is as close as we can get it to zero. So + # if we replace a and b with a+c[1] and b+c[0], then that + # will be added to our product, along with c[0]*c[1]. + da, db = c[1], c[0] + + # Flip signs as appropriate. + if (a+da) * (b+db) * dir < target * dir: + da, db = -da, -db + + # Multiply up. We want to get as close as we can to a + # solution of the quadratic equation in n + # + # (a + n da) (b + n db) = target + # => n^2 da db + n (b da + a db) + (a b - target) = 0 + A,B,C = da*db, b*da+a*db, a*b-target + discrim = B^2-4*A*C + if discrim > 0 and A != 0: + root = mathlib.sqrt(discrim) + vals = [] + vals.append((-B + root) / (2*A)) + vals.append((-B - root) / (2*A)) + if root * root != discrim: + root = root + 1 + vals.append((-B + root) / (2*A)) + vals.append((-B - root) / (2*A)) + + for n in vals: + ap = a + da*n + bp = b + db*n + pp = ap*bp + if pp * dir >= target * dir and pp * dir < best[2]*dir: + best = (ap, bp, pp) + improved = 1 + + if not improved: + break + + return best + +def hexstr(n): + s = hex(n) + if s[:2] == "0x": s = s[2:] + if s[-1:] == "L": s = s[:-1] + return s + +# Tests of multiplication which exercise the propagation of the last +# carry to the very top of the number. +for i in range(1,4200): + a, b, p = findprod((1<