mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
Modify the new rsa_verify routine. We now also check the integrity of
the private data (verifying that p > q and that iqmp really is the inverse of q mod p). In addition, we _no longer_ check that e*d == 1 mod (p-1)(q-1): instead we do separate checks mod (p-1) and mod (q-1), since the order of the multiplicative group mod n is actually equal to lcm(p-1,q-1) rather than phi(n)=(p-1)(q-1). (In other words, the Fermat-Euler theorem doesn't point both ways.) [originally from svn r1024]
This commit is contained in:
parent
6a4294fbac
commit
0962190a1b
38
sshrsa.c
38
sshrsa.c
@ -153,10 +153,11 @@ void rsa_fingerprint(char *str, int len, struct RSAKey *key) {
|
||||
|
||||
/*
|
||||
* Verify that the public data in an RSA key matches the private
|
||||
* data.
|
||||
* data. We also check the private data itself: we ensure that p >
|
||||
* q and that iqmp really is the inverse of q mod p.
|
||||
*/
|
||||
int rsa_verify(struct RSAKey *key) {
|
||||
Bignum n, ed, pm1, qm1, pm1qm1;
|
||||
Bignum n, ed, pm1, qm1;
|
||||
int cmp;
|
||||
|
||||
/* n must equal pq. */
|
||||
@ -166,21 +167,38 @@ int rsa_verify(struct RSAKey *key) {
|
||||
if (cmp != 0)
|
||||
return 0;
|
||||
|
||||
/* e * d must be congruent to 1, modulo (p-1)(q-1). */
|
||||
/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
|
||||
pm1 = copybn(key->p);
|
||||
decbn(pm1);
|
||||
qm1 = copybn(key->q);
|
||||
decbn(qm1);
|
||||
pm1qm1 = bigmul(pm1, qm1);
|
||||
freebn(pm1);
|
||||
freebn(qm1);
|
||||
ed = modmul(key->exponent, key->private_exponent, pm1qm1);
|
||||
sfree(pm1qm1);
|
||||
ed = modmul(key->exponent, key->private_exponent, pm1);
|
||||
cmp = bignum_cmp(ed, One);
|
||||
sfree(ed);
|
||||
if (cmp != 0)
|
||||
return 0;
|
||||
|
||||
qm1 = copybn(key->q);
|
||||
decbn(qm1);
|
||||
ed = modmul(key->exponent, key->private_exponent, qm1);
|
||||
cmp = bignum_cmp(ed, One);
|
||||
sfree(ed);
|
||||
if (cmp != 0)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Ensure p > q.
|
||||
*/
|
||||
if (bignum_cmp(key->p, key->q) <= 0)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Ensure iqmp * q is congruent to 1, modulo p.
|
||||
*/
|
||||
n = modmul(key->iqmp, key->q, key->p);
|
||||
cmp = bignum_cmp(n, One);
|
||||
sfree(n);
|
||||
if (cmp != 0)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user