mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
New system for generating provable prime numbers.
This uses all the facilities I've been adding in previous commits. It implements Maurer's algorithm for generating a prime together with a Pocklington certificate of its primality, by means of recursing to generate smaller primes to be factors of p-1 for the Pocklington check, then doing a test Miller-Rabin iteration to quickly exclude obvious composites, and then doing the full Pocklington check. In my case, this means I add each prime I generate to a Pockle. So the algorithm says: recursively generate some primes and add them to the PrimeCandidateSource, then repeatedly get a candidate value back from the pcs, check it with M-R, and feed it to the Pockle. If the Pockle accepts it, then we're done (and the Pockle will then know that value is prime when our recursive caller uses it in turn, if we have one). A small refinement to that algorithm is that I iterate M-R until the witness value I tried is such that it at least _might_ be a primitive root - which is to say that M-R didn't get 1 by evaluating any power of it smaller than n-1. That way, there's less chance of the Pockle rejecting the witness value. And sooner or later M-R must _either_ tell me I've got a potential primitive-root witness _or_ tell me it's shown the number to be composite.
This commit is contained in:
parent
d711cc849c
commit
141663abba
@ -261,6 +261,9 @@ static inline mp_int *primegen_generate(
|
||||
{ return ctx->vt->generate(ctx, pcs, prog); }
|
||||
|
||||
extern const PrimeGenerationPolicy primegen_probabilistic;
|
||||
extern const PrimeGenerationPolicy primegen_provable_fast;
|
||||
extern const PrimeGenerationPolicy primegen_provable_maurer_simple;
|
||||
extern const PrimeGenerationPolicy primegen_provable_maurer_complex;
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* The overall top-level API for generating entire key pairs.
|
||||
|
582
sshprime.c
582
sshprime.c
@ -110,6 +110,588 @@ const PrimeGenerationPolicy primegen_probabilistic = {
|
||||
probprime_generate,
|
||||
};
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Alternative provable-prime algorithm, based on the following paper:
|
||||
*
|
||||
* [MAURER] Maurer, U.M. Fast generation of prime numbers and secure
|
||||
* public-key cryptographic parameters. J. Cryptology 8, 123–155
|
||||
* (1995). https://doi.org/10.1007/BF00202269
|
||||
*/
|
||||
|
||||
typedef enum SubprimePolicy {
|
||||
SPP_FAST,
|
||||
SPP_MAURER_SIMPLE,
|
||||
SPP_MAURER_COMPLEX,
|
||||
} SubprimePolicy;
|
||||
|
||||
typedef struct ProvablePrimePolicyExtra {
|
||||
SubprimePolicy spp;
|
||||
} ProvablePrimePolicyExtra;
|
||||
|
||||
typedef struct ProvablePrimeContext ProvablePrimeContext;
|
||||
struct ProvablePrimeContext {
|
||||
Pockle *pockle;
|
||||
PrimeGenerationContext pgc;
|
||||
const ProvablePrimePolicyExtra *extra;
|
||||
};
|
||||
|
||||
static PrimeGenerationContext *provableprime_new_context(
|
||||
const PrimeGenerationPolicy *policy)
|
||||
{
|
||||
ProvablePrimeContext *ppc = snew(ProvablePrimeContext);
|
||||
ppc->pgc.vt = policy;
|
||||
ppc->pockle = pockle_new();
|
||||
ppc->extra = policy->extra;
|
||||
return &ppc->pgc;
|
||||
}
|
||||
|
||||
static void provableprime_free_context(PrimeGenerationContext *ctx)
|
||||
{
|
||||
ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
|
||||
pockle_free(ppc->pockle);
|
||||
sfree(ppc);
|
||||
}
|
||||
|
||||
static ProgressPhase provableprime_add_progress_phase(
|
||||
const PrimeGenerationPolicy *policy,
|
||||
ProgressReceiver *prog, unsigned bits)
|
||||
{
|
||||
/*
|
||||
* Estimating the cost of making a _provable_ prime is difficult
|
||||
* because of all the recursions to smaller sizes.
|
||||
*
|
||||
* Once you have enough factors of p-1 to certify primality of p,
|
||||
* the remaining work in provable prime generation is not very
|
||||
* different from probabilistic: you generate a random candidate,
|
||||
* test its primality probabilistically, and use the witness value
|
||||
* generated as a byproduct of that test for the full Pocklington
|
||||
* verification. The expensive part, as usual, is made of modpows.
|
||||
*
|
||||
* The Pocklington test needs at least two modpows (one for the
|
||||
* Fermat check, and one per known factor of p-1).
|
||||
*
|
||||
* The prior M-R step needs an unknown number, because we iterate
|
||||
* until we find a value whose order is divisible by the largest
|
||||
* power of 2 that divides p-1, say 2^j. That excludes half the
|
||||
* possible witness values (specifically, the quadratic residues),
|
||||
* so we expect to need on average two M-R operations to find one.
|
||||
* But that's only if the number _is_ prime - as usual, it's also
|
||||
* possible that we hit a non-prime and have to try again.
|
||||
*
|
||||
* So, if we were only estimating the cost of that final step, it
|
||||
* would look a lot like the probabilistic version: we'd have to
|
||||
* estimate the expected total number of modexps by knowing
|
||||
* something about the density of primes among our candidate
|
||||
* integers, and then multiply that by estimate_modexp_cost(bits).
|
||||
* But the problem is that we also have to _find_ a smaller prime,
|
||||
* so we have to recurse.
|
||||
*
|
||||
* In the MAURER_SIMPLE version of the algorithm, you recurse to
|
||||
* any one of a range of possible smaller sizes i, each with
|
||||
* probability proportional to 1/i. So your expected time to
|
||||
* generate an n-bit prime is given by a horrible recurrence of
|
||||
* the form E_n = S_n + (sum E_i/i) / (sum 1/i), in which S_n is
|
||||
* the expected cost of the final step once you have your smaller
|
||||
* primes, and both sums are over ceil(n/2) <= i <= n-20.
|
||||
*
|
||||
* At this point I ran out of effort to actually do the maths
|
||||
* rigorously, so instead I did the empirical experiment of
|
||||
* generating that sequence in Python and plotting it on a graph.
|
||||
* My Python code is here, in case I need it again:
|
||||
|
||||
from math import log
|
||||
|
||||
alpha = log(3)/log(2) + 1 # exponent for modexp using Karatsuba mult
|
||||
|
||||
E = [1] * 16 # assume generating tiny primes is trivial
|
||||
|
||||
for n in range(len(E), 4096):
|
||||
|
||||
# Expected time for sub-generations, as a weighted mean of prior
|
||||
# values of the same sequence.
|
||||
lo = (n+1)//2
|
||||
hi = n-20
|
||||
if lo <= hi:
|
||||
subrange = range(lo, hi+1)
|
||||
num = sum(E[i]/i for i in subrange)
|
||||
den = sum(1/i for i in subrange)
|
||||
else:
|
||||
num, den = 0, 1
|
||||
|
||||
# Constant term (cost of final step).
|
||||
# Similar to probprime_add_progress_phase.
|
||||
winnow_factor = 1 if n < 32 else 19.76
|
||||
prob = winnow_factor / (n * log(2))
|
||||
cost = 4 * n**alpha / prob
|
||||
|
||||
E.append(cost + num / den)
|
||||
|
||||
for i, p in enumerate(E):
|
||||
try:
|
||||
print(log(i), log(p))
|
||||
except ValueError:
|
||||
continue
|
||||
|
||||
* The output loop prints the logs of both i and E_i, so that when
|
||||
* I plot the resulting data file in gnuplot I get a log-log
|
||||
* diagram. That showed me some early noise and then a very
|
||||
* straight-looking line; feeding the straight part of the graph
|
||||
* to linear-regression analysis reported that it fits the line
|
||||
*
|
||||
* log E_n = -1.7901825337965498 + 3.6199197179662517 * log(n)
|
||||
* => E_n = 0.16692969657466802 * n^3.6199197179662517
|
||||
*
|
||||
* So my somewhat empirical estimate is that Maurer prime
|
||||
* generation costs about 0.167 * bits^3.62, in the same arbitrary
|
||||
* time units used by estimate_modexp_cost.
|
||||
*/
|
||||
|
||||
return progress_add_linear(prog, 0.167 * pow(bits, 3.62));
|
||||
}
|
||||
|
||||
static mp_int *primegen_small(Pockle *pockle, PrimeCandidateSource *pcs)
|
||||
{
|
||||
assert(pcs_get_bits(pcs) <= 32);
|
||||
|
||||
pcs_ready(pcs);
|
||||
|
||||
while (true) {
|
||||
mp_int *p = pcs_generate(pcs);
|
||||
if (pockle_add_small_prime(pockle, p) == POCKLE_OK) {
|
||||
pcs_free(pcs);
|
||||
return p;
|
||||
}
|
||||
mp_free(p);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PRIMEGEN
|
||||
static void timestamp(FILE *fp)
|
||||
{
|
||||
struct timespec ts;
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
fprintf(fp, "%lu.%09lu: ", (unsigned long)ts.tv_sec,
|
||||
(unsigned long)ts.tv_nsec);
|
||||
}
|
||||
static PRINTF_LIKE(1, 2) void debug_f(const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
va_start(ap, fmt);
|
||||
timestamp(stderr);
|
||||
vfprintf(stderr, fmt, ap);
|
||||
fputc('\n', stderr);
|
||||
va_end(ap);
|
||||
}
|
||||
static void debug_f_mp(const char *fmt, mp_int *x, ...)
|
||||
{
|
||||
va_list ap;
|
||||
va_start(ap, x);
|
||||
timestamp(stderr);
|
||||
vfprintf(stderr, fmt, ap);
|
||||
mp_dump(stderr, "", x, "\n");
|
||||
va_end(ap);
|
||||
}
|
||||
#else
|
||||
#define debug_f(...) ((void)0)
|
||||
#define debug_f_mp(...) ((void)0)
|
||||
#endif
|
||||
|
||||
static double uniform_random_double(void)
|
||||
{
|
||||
unsigned char randbuf[8];
|
||||
random_read(randbuf, 8);
|
||||
return GET_64BIT_MSB_FIRST(randbuf) * 0x1.0p-64;
|
||||
}
|
||||
|
||||
static mp_int *mp_ceil_div(mp_int *n, mp_int *d)
|
||||
{
|
||||
mp_int *nplus = mp_add(n, d);
|
||||
mp_sub_integer_into(nplus, nplus, 1);
|
||||
mp_int *toret = mp_div(nplus, d);
|
||||
mp_free(nplus);
|
||||
return toret;
|
||||
}
|
||||
|
||||
static mp_int *provableprime_generate_inner(
|
||||
ProvablePrimeContext *ppc, PrimeCandidateSource *pcs,
|
||||
ProgressReceiver *prog, double progress_origin, double progress_scale)
|
||||
{
|
||||
unsigned bits = pcs_get_bits(pcs);
|
||||
assert(bits > 1);
|
||||
|
||||
if (bits <= 32) {
|
||||
debug_f("ppgi(%u) -> small", bits);
|
||||
return primegen_small(ppc->pockle, pcs);
|
||||
}
|
||||
|
||||
unsigned min_bits_needed, max_bits_needed;
|
||||
{
|
||||
/*
|
||||
* Find the product of all the prime factors we already know
|
||||
* about.
|
||||
*/
|
||||
mp_int *size_got = mp_from_integer(1);
|
||||
size_t nfactors;
|
||||
mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
|
||||
for (size_t i = 0; i < nfactors; i++) {
|
||||
mp_int *to_free = size_got;
|
||||
size_got = mp_unsafe_shrink(mp_mul(size_got, factors[i]));
|
||||
mp_free(to_free);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the largest cofactor we might be able to use, and the
|
||||
* smallest one we can get away with.
|
||||
*/
|
||||
mp_int *upperbound = pcs_get_upper_bound(pcs);
|
||||
mp_int *size_needed = mp_nthroot(upperbound, 3, NULL);
|
||||
debug_f_mp("upperbound = ", upperbound);
|
||||
{
|
||||
mp_int *to_free = upperbound;
|
||||
upperbound = mp_unsafe_shrink(mp_div(upperbound, size_got));
|
||||
mp_free(to_free);
|
||||
}
|
||||
debug_f_mp("size_needed = ", size_needed);
|
||||
{
|
||||
mp_int *to_free = size_needed;
|
||||
size_needed = mp_unsafe_shrink(mp_ceil_div(size_needed, size_got));
|
||||
mp_free(to_free);
|
||||
}
|
||||
|
||||
max_bits_needed = mp_get_nbits(upperbound);
|
||||
|
||||
/*
|
||||
* We need a prime that is greater than or equal to
|
||||
* 'size_needed' in order for the product of all our known
|
||||
* factors of p-1 to exceed the cube root of the largest value
|
||||
* p might take.
|
||||
*
|
||||
* Since pcs_new wants a size specified in bits, we must count
|
||||
* the bits in size_needed and then add 1. Otherwise we might
|
||||
* get a value with the same bit count as size_needed but
|
||||
* slightly smaller than it.
|
||||
*
|
||||
* An exception is if size_needed = 1. In that case the
|
||||
* product of existing known factors is _already_ enough, so
|
||||
* we don't need to generate an extra factor at all.
|
||||
*/
|
||||
if (mp_hs_integer(size_needed, 2)) {
|
||||
min_bits_needed = mp_get_nbits(size_needed) + 1;
|
||||
} else {
|
||||
min_bits_needed = 0;
|
||||
}
|
||||
|
||||
mp_free(upperbound);
|
||||
mp_free(size_needed);
|
||||
mp_free(size_got);
|
||||
}
|
||||
|
||||
double progress = 0.0;
|
||||
|
||||
if (min_bits_needed) {
|
||||
debug_f("ppgi(%u) recursing, need [%u,%u] more bits",
|
||||
bits, min_bits_needed, max_bits_needed);
|
||||
|
||||
unsigned *sizes = NULL;
|
||||
size_t nsizes = 0, sizesize = 0;
|
||||
|
||||
unsigned real_min = max_bits_needed / 2;
|
||||
unsigned real_max = (max_bits_needed >= 20 ?
|
||||
max_bits_needed - 20 : 0);
|
||||
if (real_min < min_bits_needed)
|
||||
real_min = min_bits_needed;
|
||||
if (real_max < real_min)
|
||||
real_max = real_min;
|
||||
debug_f("ppgi(%u) revised bits interval = [%u,%u]",
|
||||
bits, real_min, real_max);
|
||||
|
||||
switch (ppc->extra->spp) {
|
||||
case SPP_FAST:
|
||||
/*
|
||||
* Always pick the smallest subsidiary prime we can get
|
||||
* away with: just over n/3 bits.
|
||||
*
|
||||
* This is not a good mode for cryptographic prime
|
||||
* generation, because it skews the distribution of primes
|
||||
* greatly, and worse, it skews them in a direction that
|
||||
* heads away from the properties crypto algorithms tend
|
||||
* to like.
|
||||
*
|
||||
* (For both discrete-log systems and RSA, people have
|
||||
* tended to recommend in the past that p-1 should have a
|
||||
* _large_ factor if possible. There's some disagreement
|
||||
* on which algorithms this is really necessary for, but
|
||||
* certainly I've never seen anyone recommend arranging a
|
||||
* _small_ factor on purpose.)
|
||||
*
|
||||
* I originally implemented this mode because it was
|
||||
* convenient for debugging - it wastes as little time as
|
||||
* possible on finding a sub-prime and lets you get to the
|
||||
* interesting part! And I leave it in the code because it
|
||||
* might still be useful for _something_. Because it's
|
||||
* cryptographically questionable, it's not selectable in
|
||||
* the UI of either version of PuTTYgen proper; but it can
|
||||
* be accessed through testcrypt, and if for some reason a
|
||||
* definite prime is needed for non-crypto purposes, it
|
||||
* may still be the fastest way to put your hands on one.
|
||||
*/
|
||||
debug_f("ppgi(%u) fast mode, just ask for %u bits",
|
||||
bits, min_bits_needed);
|
||||
sgrowarray(sizes, sizesize, nsizes);
|
||||
sizes[nsizes++] = min_bits_needed;
|
||||
break;
|
||||
case SPP_MAURER_SIMPLE: {
|
||||
/*
|
||||
* Select the size of the subsidiary prime at random from
|
||||
* sqrt(outputprime) up to outputprime/2^20, in such a way
|
||||
* that the probability distribution matches that of the
|
||||
* largest prime factor of a random n-bit number.
|
||||
*
|
||||
* Per [MAURER] section 3.4, the cumulative distribution
|
||||
* function of this relative size is 1+log2(x), for x in
|
||||
* [1/2,1]. You can generate a value from the distribution
|
||||
* given by a cdf by applying the inverse cdf to a uniform
|
||||
* value in [0,1]. Simplifying that in this case, what we
|
||||
* have to do is raise 2 to the power of a random real
|
||||
* number between -1 and 0. (And that gives you the number
|
||||
* of _bits_ in the sub-prime, as a factor of the desired
|
||||
* output number of bits.)
|
||||
*
|
||||
* We also require that the subsidiary prime q is at least
|
||||
* 20 bits smaller than the output one, to give us a
|
||||
* fighting chance of there being _any_ prime we can find
|
||||
* such that q | p-1.
|
||||
*
|
||||
* (But these rules have to be applied in an order that
|
||||
* still leaves us _some_ interval of possible sizes we
|
||||
* can pick!)
|
||||
*/
|
||||
maurer_simple:
|
||||
debug_f("ppgi(%u) Maurer simple mode", bits);
|
||||
|
||||
unsigned sub_bits;
|
||||
do {
|
||||
double uniform = uniform_random_double();
|
||||
sub_bits = real_max * pow(2.0, uniform - 1) + 0.5;
|
||||
debug_f(" ... %.6f -> %u?", uniform, sub_bits);
|
||||
} while (!(real_min <= sub_bits && sub_bits <= real_max));
|
||||
|
||||
debug_f("ppgi(%u) asking for %u bits", bits, sub_bits);
|
||||
sgrowarray(sizes, sizesize, nsizes);
|
||||
sizes[nsizes++] = sub_bits;
|
||||
|
||||
break;
|
||||
}
|
||||
case SPP_MAURER_COMPLEX: {
|
||||
/*
|
||||
* In this mode, we may generate multiple factors of p-1
|
||||
* which between them add up to at least n/2 bits, in such
|
||||
* a way that those are guaranteed to be the largest
|
||||
* factors of p-1 and that they have the same probability
|
||||
* distribution as the largest k factors would have in a
|
||||
* random integer. The idea is that this more elaborate
|
||||
* procedure gets as close as possible to the same
|
||||
* probability distribution you'd get by selecting a
|
||||
* completely random prime (if you feasibly could).
|
||||
*
|
||||
* Algorithm from Appendix 1 of [MAURER]: we generate
|
||||
* random real numbers that sum to at most 1, by choosing
|
||||
* each one uniformly from the range [0, 1 - sum of all
|
||||
* the previous ones]. We maintain them in a list in
|
||||
* decreasing order, and we stop as soon as we find an
|
||||
* initial subsequence of the list s_1,...,s_r such that
|
||||
* s_1 + ... + s_{r-1} + 2 s_r > 1. In particular, this
|
||||
* guarantees that the sum of that initial subsequence is
|
||||
* at least 1/2, so we end up with enough factors to
|
||||
* satisfy Pocklington.
|
||||
*/
|
||||
|
||||
if (max_bits_needed / 2 + 1 > real_max) {
|
||||
/* Early exit path in the case where this algorithm
|
||||
* can't possibly generate a value in the range we
|
||||
* need. In that situation, fall back to Maurer
|
||||
* simple. */
|
||||
debug_f("ppgi(%u) skipping GenerateSizeList, "
|
||||
"real_max too small", bits);
|
||||
goto maurer_simple; /* sorry! */
|
||||
}
|
||||
|
||||
double *s = NULL;
|
||||
size_t ns, ssize = 0;
|
||||
|
||||
while (true) {
|
||||
debug_f("ppgi(%u) starting GenerateSizeList", bits);
|
||||
ns = 0;
|
||||
double range = 1.0;
|
||||
while (true) {
|
||||
/* Generate the next number */
|
||||
double u = uniform_random_double() * range;
|
||||
range -= u;
|
||||
debug_f(" u_%"SIZEu" = %g", ns, u);
|
||||
|
||||
/* Insert it in the list */
|
||||
sgrowarray(s, ssize, ns);
|
||||
size_t i;
|
||||
for (i = ns; i > 0 && s[i-1] < u; i--)
|
||||
s[i] = s[i-1];
|
||||
s[i] = u;
|
||||
ns++;
|
||||
debug_f(" inserting as s[%"SIZEu"]", i);
|
||||
|
||||
/* Look for a suitable initial subsequence */
|
||||
double sum = 0;
|
||||
for (i = 0; i < ns; i++) {
|
||||
sum += s[i];
|
||||
if (sum + s[i] > 1.0) {
|
||||
debug_f(" s[0..%"SIZEu"] works!", i);
|
||||
|
||||
/* Truncate the sequence here, and stop
|
||||
* generating random real numbers. */
|
||||
ns = i+1;
|
||||
goto got_list;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
got_list:;
|
||||
/*
|
||||
* Now translate those real numbers into actual bit
|
||||
* counts, and do a last-minute check to make sure we
|
||||
* haven't generated one too close to the final output
|
||||
* size.
|
||||
*/
|
||||
nsizes = 0;
|
||||
|
||||
unsigned total = 1; /* account for leading 1 */
|
||||
|
||||
for (size_t i = 0; i < ns; i++) {
|
||||
/* These sizes are measured in actual entropy, so
|
||||
* add 1 bit each time to account for the
|
||||
* zero-information leading 1 */
|
||||
unsigned this_size = max_bits_needed * s[i] + 1;
|
||||
debug_f(" bits[%"SIZEu"] = %u", i, this_size);
|
||||
sgrowarray(sizes, sizesize, nsizes);
|
||||
sizes[nsizes++] = this_size;
|
||||
|
||||
total += this_size - 1;
|
||||
}
|
||||
|
||||
debug_f(" total bits = %u", total);
|
||||
if (total < real_min || total > real_max) {
|
||||
debug_f(" total out of range, try again");
|
||||
} else {
|
||||
debug_f(" success! %"SIZEu" sub-primes totalling %u bits",
|
||||
nsizes, total);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
smemclr(s, ssize * sizeof(*s));
|
||||
sfree(s);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
unreachable("bad subprime policy");
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < nsizes; i++) {
|
||||
unsigned sub_bits = sizes[i];
|
||||
double progress_in_this_prime = (double)sub_bits / bits;
|
||||
mp_int *q = provableprime_generate_inner(
|
||||
ppc, pcs_new(sub_bits),
|
||||
prog, progress_origin + progress_scale * progress,
|
||||
progress_scale * progress_in_this_prime);
|
||||
progress += progress_in_this_prime;
|
||||
assert(q);
|
||||
debug_f_mp("ppgi(%u) got factor ", q, bits);
|
||||
pcs_require_residue_1_mod_prime(pcs, q);
|
||||
mp_free(q);
|
||||
}
|
||||
|
||||
smemclr(sizes, sizesize * sizeof(*sizes));
|
||||
sfree(sizes);
|
||||
} else {
|
||||
debug_f("ppgi(%u) no need to recurse", bits);
|
||||
}
|
||||
|
||||
debug_f("ppgi(%u) ready", bits);
|
||||
pcs_ready(pcs);
|
||||
|
||||
while (true) {
|
||||
mp_int *p = pcs_generate(pcs);
|
||||
|
||||
debug_f_mp("provable_step p=", p);
|
||||
|
||||
MillerRabin *mr = miller_rabin_new(p);
|
||||
debug_f("provable_step mr setup done");
|
||||
mp_int *witness = miller_rabin_find_potential_primitive_root(mr);
|
||||
miller_rabin_free(mr);
|
||||
|
||||
if (!witness) {
|
||||
debug_f("provable_step mr failed");
|
||||
mp_free(p);
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t nfactors;
|
||||
mp_int **factors = pcs_get_known_prime_factors(pcs, &nfactors);
|
||||
PockleStatus st = pockle_add_prime(
|
||||
ppc->pockle, p, factors, nfactors, witness);
|
||||
|
||||
if (st != POCKLE_OK) {
|
||||
debug_f("provable_step proof failed %d", (int)st);
|
||||
|
||||
/*
|
||||
* Check by assertion that the error status is not one of
|
||||
* the ones we ought to have ruled out already by
|
||||
* construction. If there's a bug in this code that means
|
||||
* we can _never_ pass this test (e.g. picking products of
|
||||
* factors that never quite reach cbrt(n)), we'd rather
|
||||
* fail an assertion than loop forever.
|
||||
*/
|
||||
assert(st == POCKLE_DISCRIMINANT_IS_SQUARE ||
|
||||
st == POCKLE_WITNESS_POWER_IS_1 ||
|
||||
st == POCKLE_WITNESS_POWER_NOT_COPRIME);
|
||||
|
||||
mp_free(p);
|
||||
if (witness)
|
||||
mp_free(witness);
|
||||
continue;
|
||||
}
|
||||
|
||||
mp_free(witness);
|
||||
pcs_free(pcs);
|
||||
debug_f_mp("ppgi(%u) done, got ", p, bits);
|
||||
progress_report(prog, progress_origin + progress_scale);
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
static mp_int *provableprime_generate(
|
||||
PrimeGenerationContext *ctx,
|
||||
PrimeCandidateSource *pcs, ProgressReceiver *prog)
|
||||
{
|
||||
ProvablePrimeContext *ppc = container_of(ctx, ProvablePrimeContext, pgc);
|
||||
mp_int *p = provableprime_generate_inner(ppc, pcs, prog, 0.0, 1.0);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
#define DECLARE_POLICY(name, policy) \
|
||||
static const struct ProvablePrimePolicyExtra \
|
||||
pppextra_##name = {policy}; \
|
||||
const PrimeGenerationPolicy name = { \
|
||||
provableprime_add_progress_phase, \
|
||||
provableprime_new_context, \
|
||||
provableprime_free_context, \
|
||||
provableprime_generate, \
|
||||
&pppextra_##name, \
|
||||
}
|
||||
|
||||
DECLARE_POLICY(primegen_provable_fast, SPP_FAST);
|
||||
DECLARE_POLICY(primegen_provable_maurer_simple, SPP_MAURER_SIMPLE);
|
||||
DECLARE_POLICY(primegen_provable_maurer_complex, SPP_MAURER_COMPLEX);
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Reusable null implementation of the progress-reporting API.
|
||||
*/
|
||||
|
@ -378,6 +378,9 @@ static const PrimeGenerationPolicy *get_primegenpolicy(BinarySource *in)
|
||||
const PrimeGenerationPolicy *value;
|
||||
} algs[] = {
|
||||
{"probabilistic", &primegen_probabilistic},
|
||||
{"provable_fast", &primegen_provable_fast},
|
||||
{"provable_maurer_simple", &primegen_provable_maurer_simple},
|
||||
{"provable_maurer_complex", &primegen_provable_maurer_complex},
|
||||
};
|
||||
|
||||
ptrlen name = get_word(in);
|
||||
|
Loading…
Reference in New Issue
Block a user