diff --git a/sshbn.c b/sshbn.c index cae1bd9e..3534361e 100644 --- a/sshbn.c +++ b/sshbn.c @@ -704,9 +704,130 @@ static void internal_mod(BignumInt *a, int alen, } } +/* + * Compute (base ^ exp) % mod, the pedestrian way. + */ +Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod) +{ + BignumInt *a, *b, *n, *m; + int mshift; + int mlen, i, j; + Bignum base, result; + + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + + /* + * Make sure the base is smaller than the modulus, by reducing + * it modulo the modulus if not. + */ + base = bigmod(base_in, mod); + + /* Allocate m of size mlen, copy mod to m */ + /* We use big endian internally */ + mlen = mod[0]; + m = snewn(mlen, BignumInt); + for (j = 0; j < mlen; j++) + m[j] = mod[mod[0] - j]; + + /* Shift m left to make msb bit set */ + for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++) + if ((m[0] << mshift) & BIGNUM_TOP_BIT) + break; + if (mshift) { + for (i = 0; i < mlen - 1; i++) + m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift)); + m[mlen - 1] = m[mlen - 1] << mshift; + } + + /* Allocate n of size mlen, copy base to n */ + n = snewn(mlen, BignumInt); + i = mlen - base[0]; + for (j = 0; j < i; j++) + n[j] = 0; + for (j = 0; j < (int)base[0]; j++) + n[i + j] = base[base[0] - j]; + + /* Allocate a and b of size 2*mlen. Set a = 1 */ + a = snewn(2 * mlen, BignumInt); + b = snewn(2 * mlen, BignumInt); + for (i = 0; i < 2 * mlen; i++) + a[i] = 0; + a[2 * mlen - 1] = 1; + + /* Skip leading zero bits of exp. */ + i = 0; + j = BIGNUM_INT_BITS-1; + while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { + j--; + if (j < 0) { + i++; + j = BIGNUM_INT_BITS-1; + } + } + + /* Main computation */ + while (i < (int)exp[0]) { + while (j >= 0) { + internal_mul(a + mlen, a + mlen, b, mlen); + internal_mod(b, mlen * 2, m, mlen, NULL, 0); + if ((exp[exp[0] - i] & (1 << j)) != 0) { + internal_mul(b + mlen, n, a, mlen); + internal_mod(a, mlen * 2, m, mlen, NULL, 0); + } else { + BignumInt *t; + t = a; + a = b; + b = t; + } + j--; + } + i++; + j = BIGNUM_INT_BITS-1; + } + + /* Fixup result in case the modulus was shifted */ + if (mshift) { + for (i = mlen - 1; i < 2 * mlen - 1; i++) + a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift)); + a[2 * mlen - 1] = a[2 * mlen - 1] << mshift; + internal_mod(a, mlen * 2, m, mlen, NULL, 0); + for (i = 2 * mlen - 1; i >= mlen; i--) + a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift)); + } + + /* Copy result to buffer */ + result = newbn(mod[0]); + for (i = 0; i < mlen; i++) + result[result[0] - i] = a[i + mlen]; + while (result[0] > 1 && result[result[0]] == 0) + result[0]--; + + /* Free temporary arrays */ + for (i = 0; i < 2 * mlen; i++) + a[i] = 0; + sfree(a); + for (i = 0; i < 2 * mlen; i++) + b[i] = 0; + sfree(b); + for (i = 0; i < mlen; i++) + m[i] = 0; + sfree(m); + for (i = 0; i < mlen; i++) + n[i] = 0; + sfree(n); + + freebn(base); + + return result; +} + /* * Compute (base ^ exp) % mod. Uses the Montgomery multiplication - * technique. + * technique where possible, falling back to modpow_simple otherwise. */ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) { @@ -720,18 +841,19 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) */ assert(mod[mod[0]] != 0); + /* + * mod had better be odd, or we can't do Montgomery multiplication + * using a power of two at all. + */ + if (!(mod[1] & 1)) + return modpow_simple(base_in, exp, mod); + /* * Make sure the base is smaller than the modulus, by reducing * it modulo the modulus if not. */ base = bigmod(base_in, mod); - /* - * mod had better be odd, or we can't do Montgomery multiplication - * using a power of two at all. - */ - assert(mod[1] & 1); - /* * Compute the inverse of n mod r, for monty_reduce. (In fact we * want the inverse of _minus_ n mod r, but we'll sort that out