mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-07-02 20:12:48 -05:00
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In its place is a new thing called 'mp_int', handled by an entirely new library module mpint.c, with API differences both large and small. The main aim of this change is that the new library should be free of timing- and cache-related side channels. I've written the code so that it _should_ - assuming I haven't made any mistakes - do all of its work without either control flow or memory addressing depending on the data words of the input numbers. (Though, being an _arbitrary_ precision library, it does have to at least depend on the sizes of the numbers - but there's a 'formal' size that can vary separately from the actual magnitude of the represented integer, so if you want to keep it secret that your number is actually small, it should work fine to have a very long mp_int and just happen to store 23 in it.) So I've done all my conditionalisation by means of computing both answers and doing bit-masking to swap the right one into place, and all loops over the words of an mp_int go up to the formal size rather than the actual size. I haven't actually tested the constant-time property in any rigorous way yet (I'm still considering the best way to do it). But this code is surely at the very least a big improvement on the old version, even if I later find a few more things to fix. I've also completely rewritten the low-level elliptic curve arithmetic from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c than it is to the SSH end of the code. The new elliptic curve code keeps all coordinates in Montgomery-multiplication transformed form to speed up all the multiplications mod the same prime, and only converts them back when you ask for the affine coordinates. Also, I adopted extended coordinates for the Edwards curve implementation. sshecc.c has also had a near-total rewrite in the course of switching it over to the new system. While I was there, I've separated ECDSA and EdDSA more completely - they now have separate vtables, instead of a single vtable in which nearly every function had a big if statement in it - and also made the externally exposed types for an ECDSA key and an ECDH context different. A minor new feature: since the new arithmetic code includes a modular square root function, we can now support the compressed point representation for the NIST curves. We seem to have been getting along fine without that so far, but it seemed a shame not to put it in, since it was suddenly easy. In sshrsa.c, one major change is that I've removed the RSA blinding step in rsa_privkey_op, in which we randomise the ciphertext before doing the decryption. The purpose of that was to avoid timing leaks giving away the plaintext - but the new arithmetic code should take that in its stride in the course of also being careful enough to avoid leaking the _private key_, which RSA blinding had no way to do anything about in any case. Apart from those specific points, most of the rest of the changes are more or less mechanical, just changing type names and translating code into the new API.
This commit is contained in:
280
sshprime.c
280
sshprime.c
@ -4,6 +4,7 @@
|
||||
|
||||
#include <assert.h>
|
||||
#include "ssh.h"
|
||||
#include "mpint.h"
|
||||
|
||||
/*
|
||||
* This prime generation algorithm is pretty much cribbed from
|
||||
@ -134,6 +135,23 @@ static void init_primes_array(void)
|
||||
assert(pos == NPRIMES);
|
||||
}
|
||||
|
||||
static unsigned short mp_mod_short(mp_int *x, unsigned short modulus)
|
||||
{
|
||||
/*
|
||||
* This function lives here rather than in mpint.c partly because
|
||||
* this is the only place it's needed, but mostly because it
|
||||
* doesn't pay careful attention to constant running time, since
|
||||
* as far as I can tell that's a lost cause for key generation
|
||||
* anyway.
|
||||
*/
|
||||
unsigned accumulator = 0;
|
||||
for (size_t i = mp_max_bytes(x); i-- > 0 ;) {
|
||||
accumulator = 0x100 * accumulator + mp_get_byte(x, i);
|
||||
accumulator %= modulus;
|
||||
}
|
||||
return accumulator;
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a prime. We can deal with various extra properties of
|
||||
* the prime:
|
||||
@ -154,23 +172,15 @@ static void init_primes_array(void)
|
||||
* 'firstbits' is not needed, specifying it to either 0 or 1 is
|
||||
* an adequate no-op.
|
||||
*/
|
||||
Bignum primegen(int bits, int modulus, int residue, Bignum factor,
|
||||
int phase, progfn_t pfn, void *pfnparam, unsigned firstbits)
|
||||
mp_int *primegen(
|
||||
int bits, int modulus, int residue, mp_int *factor,
|
||||
int phase, progfn_t pfn, void *pfnparam, unsigned firstbits)
|
||||
{
|
||||
int i, k, v, byte, bitsleft, check, checks, fbsize;
|
||||
unsigned long delta;
|
||||
unsigned long moduli[NPRIMES + 1];
|
||||
unsigned long residues[NPRIMES + 1];
|
||||
unsigned long multipliers[NPRIMES + 1];
|
||||
Bignum p, pm1, q, wqp, wqp2;
|
||||
int progress = 0;
|
||||
|
||||
init_primes_array();
|
||||
|
||||
byte = 0;
|
||||
bitsleft = 0;
|
||||
int progress = 0;
|
||||
|
||||
fbsize = 0;
|
||||
size_t fbsize = 0;
|
||||
while (firstbits >> fbsize) /* work out how to align this */
|
||||
fbsize++;
|
||||
|
||||
@ -184,184 +194,172 @@ Bignum primegen(int bits, int modulus, int residue, Bignum factor,
|
||||
* random number with the top bit set and the bottom bit clear,
|
||||
* multiply it by `factor', and add one.
|
||||
*/
|
||||
p = bn_power_2(bits - 1);
|
||||
for (i = 0; i < bits; i++) {
|
||||
if (i == 0 || i == bits - 1) {
|
||||
v = (i != 0 || !factor) ? 1 : 0;
|
||||
} else if (i >= bits - fbsize) {
|
||||
v = (firstbits >> (i - (bits - fbsize))) & 1;
|
||||
} else {
|
||||
if (bitsleft <= 0)
|
||||
bitsleft = 8, byte = random_byte();
|
||||
v = byte & 1;
|
||||
byte >>= 1;
|
||||
bitsleft--;
|
||||
}
|
||||
bignum_set_bit(p, i, v);
|
||||
}
|
||||
mp_int *p = mp_random_bits(bits - 1);
|
||||
|
||||
mp_set_bit(p, 0, factor ? 0 : 1); /* bottom bit */
|
||||
mp_set_bit(p, bits-1, 1); /* top bit */
|
||||
for (size_t i = 0; i < fbsize; i++)
|
||||
mp_set_bit(p, bits-fbsize + i, 1 & (firstbits >> i));
|
||||
|
||||
if (factor) {
|
||||
Bignum tmp = p;
|
||||
p = bigmul(tmp, factor);
|
||||
freebn(tmp);
|
||||
assert(bignum_bit(p, 0) == 0);
|
||||
bignum_set_bit(p, 0, 1);
|
||||
mp_int *tmp = p;
|
||||
p = mp_mul(tmp, factor);
|
||||
mp_free(tmp);
|
||||
assert(mp_get_bit(p, 0) == 0);
|
||||
mp_set_bit(p, 0, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ensure this random number is coprime to the first few
|
||||
* primes, by repeatedly adding either 2 or 2*factor to it
|
||||
* until it is.
|
||||
* We need to ensure this random number is coprime to the first
|
||||
* few primes, by repeatedly adding either 2 or 2*factor to it
|
||||
* until it is. To do this we make a list of (modulus, residue)
|
||||
* pairs to avoid, and we also add to that list the extra pair our
|
||||
* caller wants to avoid.
|
||||
*/
|
||||
for (i = 0; i < NPRIMES; i++) {
|
||||
|
||||
/* List the moduli */
|
||||
unsigned long moduli[NPRIMES + 1];
|
||||
for (size_t i = 0; i < NPRIMES; i++)
|
||||
moduli[i] = primes[i];
|
||||
residues[i] = bignum_mod_short(p, primes[i]);
|
||||
moduli[NPRIMES] = modulus;
|
||||
|
||||
/* Find the residue of our starting number mod each of them. Also
|
||||
* set up the multipliers array which tells us how each one will
|
||||
* change when we increment the number (which isn't just 1 if
|
||||
* we're incrementing by multiples of factor). */
|
||||
unsigned long residues[NPRIMES + 1], multipliers[NPRIMES + 1];
|
||||
for (size_t i = 0; i < lenof(moduli); i++) {
|
||||
residues[i] = mp_mod_short(p, moduli[i]);
|
||||
if (factor)
|
||||
multipliers[i] = bignum_mod_short(factor, primes[i]);
|
||||
multipliers[i] = mp_mod_short(factor, moduli[i]);
|
||||
else
|
||||
multipliers[i] = 1;
|
||||
}
|
||||
moduli[NPRIMES] = modulus;
|
||||
residues[NPRIMES] = (bignum_mod_short(p, (unsigned short) modulus)
|
||||
+ modulus - residue);
|
||||
if (factor)
|
||||
multipliers[NPRIMES] = bignum_mod_short(factor, modulus);
|
||||
else
|
||||
multipliers[NPRIMES] = 1;
|
||||
delta = 0;
|
||||
|
||||
/* Adjust the last entry so that it avoids a residue other than zero */
|
||||
residues[NPRIMES] = (residues[NPRIMES] + modulus - residue) % modulus;
|
||||
|
||||
/*
|
||||
* Now loop until no residue in that list is zero, to find a
|
||||
* sensible increment. We maintain the increment in an ordinary
|
||||
* integer, so if it gets too big, we'll have to give up and go
|
||||
* back to making up a fresh random large integer.
|
||||
*/
|
||||
unsigned delta = 0;
|
||||
while (1) {
|
||||
for (i = 0; i < (sizeof(moduli) / sizeof(*moduli)); i++)
|
||||
for (size_t i = 0; i < lenof(moduli); i++)
|
||||
if (!((residues[i] + delta * multipliers[i]) % moduli[i]))
|
||||
break;
|
||||
if (i < (sizeof(moduli) / sizeof(*moduli))) { /* we broke */
|
||||
delta += 2;
|
||||
if (delta > 65536) {
|
||||
freebn(p);
|
||||
goto STARTOVER;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
goto found_a_zero;
|
||||
|
||||
/* If we didn't exit that loop by goto, we've got our candidate. */
|
||||
break;
|
||||
|
||||
found_a_zero:
|
||||
delta += 2;
|
||||
if (delta > 65536) {
|
||||
mp_free(p);
|
||||
goto STARTOVER;
|
||||
}
|
||||
}
|
||||
q = p;
|
||||
|
||||
/*
|
||||
* Having found a plausible increment, actually add it on.
|
||||
*/
|
||||
if (factor) {
|
||||
Bignum tmp;
|
||||
tmp = bignum_from_long(delta);
|
||||
p = bigmuladd(tmp, factor, q);
|
||||
freebn(tmp);
|
||||
mp_int *d = mp_from_integer(delta);
|
||||
mp_int *df = mp_mul(d, factor);
|
||||
mp_add_into(p, p, df);
|
||||
mp_free(d);
|
||||
mp_free(df);
|
||||
} else {
|
||||
p = bignum_add_long(q, delta);
|
||||
mp_add_integer_into(p, p, delta);
|
||||
}
|
||||
freebn(q);
|
||||
|
||||
/*
|
||||
* Now apply the Miller-Rabin primality test a few times. First
|
||||
* work out how many checks are needed.
|
||||
*/
|
||||
checks = 27;
|
||||
if (bits >= 150)
|
||||
checks = 18;
|
||||
if (bits >= 200)
|
||||
checks = 15;
|
||||
if (bits >= 250)
|
||||
checks = 12;
|
||||
if (bits >= 300)
|
||||
checks = 9;
|
||||
if (bits >= 350)
|
||||
checks = 8;
|
||||
if (bits >= 400)
|
||||
checks = 7;
|
||||
if (bits >= 450)
|
||||
checks = 6;
|
||||
if (bits >= 550)
|
||||
checks = 5;
|
||||
if (bits >= 650)
|
||||
checks = 4;
|
||||
if (bits >= 850)
|
||||
checks = 3;
|
||||
if (bits >= 1300)
|
||||
checks = 2;
|
||||
unsigned checks =
|
||||
bits >= 1300 ? 2 : bits >= 850 ? 3 : bits >= 650 ? 4 :
|
||||
bits >= 550 ? 5 : bits >= 450 ? 6 : bits >= 400 ? 7 :
|
||||
bits >= 350 ? 8 : bits >= 300 ? 9 : bits >= 250 ? 12 :
|
||||
bits >= 200 ? 15 : bits >= 150 ? 18 : 27;
|
||||
|
||||
/*
|
||||
* Next, write p-1 as q*2^k.
|
||||
*/
|
||||
for (k = 0; bignum_bit(p, k) == !k; k++)
|
||||
size_t k;
|
||||
for (k = 0; mp_get_bit(p, k) == !k; k++)
|
||||
continue; /* find first 1 bit in p-1 */
|
||||
q = bignum_rshift(p, k);
|
||||
/* And store p-1 itself, which we'll need. */
|
||||
pm1 = copybn(p);
|
||||
decbn(pm1);
|
||||
mp_int *q = mp_rshift_safe(p, k);
|
||||
|
||||
/*
|
||||
* Set up stuff for the Miller-Rabin checks.
|
||||
*/
|
||||
mp_int *two = mp_from_integer(2);
|
||||
mp_int *pm1 = mp_copy(p);
|
||||
mp_sub_integer_into(pm1, pm1, 1);
|
||||
MontyContext *mc = monty_new(p);
|
||||
mp_int *m_pm1 = monty_import(mc, pm1);
|
||||
|
||||
bool known_bad = false;
|
||||
|
||||
/*
|
||||
* Now, for each check ...
|
||||
*/
|
||||
for (check = 0; check < checks; check++) {
|
||||
Bignum w;
|
||||
|
||||
for (unsigned check = 0; check < checks && !known_bad; check++) {
|
||||
/*
|
||||
* Invent a random number between 1 and p-1 inclusive.
|
||||
* Invent a random number between 1 and p-1.
|
||||
*/
|
||||
while (1) {
|
||||
w = bn_power_2(bits - 1);
|
||||
for (i = 0; i < bits; i++) {
|
||||
if (bitsleft <= 0)
|
||||
bitsleft = 8, byte = random_byte();
|
||||
v = byte & 1;
|
||||
byte >>= 1;
|
||||
bitsleft--;
|
||||
bignum_set_bit(w, i, v);
|
||||
}
|
||||
bn_restore_invariant(w);
|
||||
if (bignum_cmp(w, p) >= 0 || bignum_cmp(w, Zero) == 0) {
|
||||
freebn(w);
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
mp_int *w = mp_random_in_range(two, pm1);
|
||||
monty_import_into(mc, w, w);
|
||||
|
||||
pfn(pfnparam, PROGFN_PROGRESS, phase, ++progress);
|
||||
|
||||
/*
|
||||
* Compute w^q mod p.
|
||||
*/
|
||||
wqp = modpow(w, q, p);
|
||||
freebn(w);
|
||||
mp_int *wqp = monty_pow(mc, w, q);
|
||||
mp_free(w);
|
||||
|
||||
/*
|
||||
* See if this is 1, or if it is -1, or if it becomes -1
|
||||
* when squared at most k-1 times.
|
||||
*/
|
||||
if (bignum_cmp(wqp, One) == 0 || bignum_cmp(wqp, pm1) == 0) {
|
||||
freebn(wqp);
|
||||
continue;
|
||||
}
|
||||
for (i = 0; i < k - 1; i++) {
|
||||
wqp2 = modmul(wqp, wqp, p);
|
||||
freebn(wqp);
|
||||
wqp = wqp2;
|
||||
if (bignum_cmp(wqp, pm1) == 0)
|
||||
break;
|
||||
}
|
||||
if (i < k - 1) {
|
||||
freebn(wqp);
|
||||
continue;
|
||||
bool passed = false;
|
||||
|
||||
if (mp_cmp_eq(wqp, monty_identity(mc)) || mp_cmp_eq(wqp, m_pm1)) {
|
||||
passed = true;
|
||||
} else {
|
||||
for (size_t i = 0; i < k - 1; i++) {
|
||||
monty_mul_into(mc, wqp, wqp, wqp);
|
||||
if (mp_cmp_eq(wqp, m_pm1)) {
|
||||
passed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* It didn't. Therefore, w is a witness for the
|
||||
* compositeness of p.
|
||||
*/
|
||||
freebn(wqp);
|
||||
freebn(p);
|
||||
freebn(pm1);
|
||||
freebn(q);
|
||||
goto STARTOVER;
|
||||
if (!passed)
|
||||
known_bad = true;
|
||||
|
||||
mp_free(wqp);
|
||||
}
|
||||
|
||||
mp_free(q);
|
||||
mp_free(two);
|
||||
mp_free(pm1);
|
||||
monty_free(mc);
|
||||
mp_free(m_pm1);
|
||||
|
||||
if (known_bad) {
|
||||
mp_free(p);
|
||||
goto STARTOVER;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have a prime!
|
||||
*/
|
||||
freebn(q);
|
||||
freebn(pm1);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user