mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
Prepare for EdDSA lengths not 7 mod 8. (NFC)
An EdDSA public key is transmitted as an integer just big enough to store the curve point's y value plus one extra bit. The topmost bit of the integer is set to indicate the parity of the x value. In Ed25519, this works out very nicely: the curve modulus is just under 2^255, so the y value occupies all but one bit of the topmost byte of the integer, leaving the y parity to fit neatly in the spare bit. But in Ed448, the curve modulus occupies a whole number of bytes (56 of them) and the format standardises that you therefore have to use a 57-byte string for the public key, with the highest-order (final) byte having zero in the low 7 of its bits. To support this, I've arranged that the Edwards-curve modes in sshecc.c now set curve->fieldBytes to the right number of bytes to hold curve->fieldBits+1 bits, instead of the obvious curve->fieldBits. Doing it that way means fewer special cases everywhere else in the code. Also, this means changing the order of the validity check: we now wait until after we've checked and cleared the topmost bit to see if the rest is within range. That deals with checking the intervening 7 zero bits.
This commit is contained in:
parent
6c226e4c57
commit
4e6c69d5df
40
sshecc.c
40
sshecc.c
@ -44,19 +44,20 @@
|
||||
*/
|
||||
|
||||
static void initialise_common(
|
||||
struct ec_curve *curve, EllipticCurveType type, mp_int *p)
|
||||
struct ec_curve *curve, EllipticCurveType type, mp_int *p,
|
||||
unsigned extrabits)
|
||||
{
|
||||
curve->type = type;
|
||||
curve->p = mp_copy(p);
|
||||
curve->fieldBits = mp_get_nbits(p);
|
||||
curve->fieldBytes = (curve->fieldBits + 7) / 8;
|
||||
curve->fieldBytes = (curve->fieldBits + extrabits + 7) / 8;
|
||||
}
|
||||
|
||||
static void initialise_wcurve(
|
||||
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
|
||||
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order)
|
||||
{
|
||||
initialise_common(curve, EC_WEIERSTRASS, p);
|
||||
initialise_common(curve, EC_WEIERSTRASS, p, 0);
|
||||
|
||||
curve->w.wc = ecc_weierstrass_curve(p, a, b, nonsquare);
|
||||
|
||||
@ -68,7 +69,7 @@ static void initialise_mcurve(
|
||||
struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b,
|
||||
mp_int *G_x, unsigned log2_cofactor)
|
||||
{
|
||||
initialise_common(curve, EC_MONTGOMERY, p);
|
||||
initialise_common(curve, EC_MONTGOMERY, p, 0);
|
||||
|
||||
curve->m.mc = ecc_montgomery_curve(p, a, b);
|
||||
curve->m.log2_cofactor = log2_cofactor;
|
||||
@ -81,7 +82,9 @@ static void initialise_ecurve(
|
||||
mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order,
|
||||
unsigned log2_cofactor)
|
||||
{
|
||||
initialise_common(curve, EC_EDWARDS, p);
|
||||
/* Ensure curve->fieldBytes is long enough to store an extra bit
|
||||
* for a compressed point */
|
||||
initialise_common(curve, EC_EDWARDS, p, 1);
|
||||
|
||||
curve->e.ec = ecc_edwards_curve(p, d, a, nonsquare);
|
||||
curve->e.log2_cofactor = log2_cofactor;
|
||||
@ -366,16 +369,15 @@ static mp_int *BinarySource_get_mp_le(BinarySource *src)
|
||||
}
|
||||
#define get_mp_le(src) BinarySource_get_mp_le(BinarySource_UPCAST(src))
|
||||
|
||||
static void BinarySink_put_mp_le_unsigned(BinarySink *bs, mp_int *x)
|
||||
static void BinarySink_put_mp_le_fixedlen(BinarySink *bs, mp_int *x,
|
||||
size_t bytes)
|
||||
{
|
||||
size_t bytes = (mp_get_nbits(x) + 7) / 8;
|
||||
|
||||
put_uint32(bs, bytes);
|
||||
for (size_t i = 0; i < bytes; ++i)
|
||||
put_byte(bs, mp_get_byte(x, i));
|
||||
}
|
||||
#define put_mp_le_unsigned(bs, x) \
|
||||
BinarySink_put_mp_le_unsigned(BinarySink_UPCAST(bs), x)
|
||||
#define put_mp_le_fixedlen(bs, x, bytes) \
|
||||
BinarySink_put_mp_le_fixedlen(BinarySink_UPCAST(bs), x, bytes)
|
||||
|
||||
static WeierstrassPoint *ecdsa_decode(
|
||||
ptrlen encoded, const struct ec_curve *curve)
|
||||
@ -494,20 +496,20 @@ static void BinarySink_put_wpoint(
|
||||
static EdwardsPoint *eddsa_decode(ptrlen encoded, const struct ec_curve *curve)
|
||||
{
|
||||
assert(curve->type == EC_EDWARDS);
|
||||
assert(curve->fieldBits % 8 == 7);
|
||||
|
||||
mp_int *y = mp_from_bytes_le(encoded);
|
||||
|
||||
if (mp_get_nbits(y) > curve->fieldBits+1) {
|
||||
/* The topmost bit of the encoding isn't part of y, so it stores
|
||||
* the bottom bit of x. Extract it, and zero that bit in y. */
|
||||
unsigned desired_x_parity = mp_get_bit(y, curve->fieldBytes * 8 - 1);
|
||||
mp_set_bit(y, curve->fieldBytes * 8 - 1, 0);
|
||||
|
||||
/* What's left should now be within the range of the curve's modulus */
|
||||
if (mp_cmp_hs(y, curve->p)) {
|
||||
mp_free(y);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* The topmost bit of the encoding isn't part of y, so it stores
|
||||
* the bottom bit of x. Extract it, and zero that bit in y. */
|
||||
unsigned desired_x_parity = mp_get_bit(y, curve->fieldBits);
|
||||
mp_set_bit(y, curve->fieldBits, 0);
|
||||
|
||||
EdwardsPoint *P = ecc_edwards_point_new_from_y(
|
||||
curve->e.ec, y, desired_x_parity);
|
||||
mp_free(y);
|
||||
@ -758,7 +760,7 @@ static void eddsa_private_blob(ssh_key *key, BinarySink *bs)
|
||||
|
||||
/* EdDSA stores the private key integer little-endian and unsigned */
|
||||
assert(ek->privateKey);
|
||||
put_mp_le_unsigned(bs, ek->privateKey);
|
||||
put_mp_le_fixedlen(bs, ek->privateKey, ek->curve->fieldBytes);
|
||||
}
|
||||
|
||||
static ssh_key *ecdsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv)
|
||||
@ -846,7 +848,7 @@ static void eddsa_openssh_blob(ssh_key *key, BinarySink *bs)
|
||||
ptrlen pub = make_ptrlen(pub_sb->s + 4, pub_sb->len - 4);
|
||||
|
||||
strbuf *priv_sb = strbuf_new_nm();
|
||||
put_mp_le_unsigned(priv_sb, ek->privateKey);
|
||||
put_mp_le_fixedlen(priv_sb, ek->privateKey, ek->curve->fieldBytes);
|
||||
ptrlen priv = make_ptrlen(priv_sb->s + 4, priv_sb->len - 4);
|
||||
|
||||
put_stringpl(bs, pub);
|
||||
|
Loading…
Reference in New Issue
Block a user