mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-07-18 19:41:01 -05:00
Revert "New vtable API for keygen progress reporting."
This reverts commit a7bdefb394
.
I had accidentally mashed it together with another commit. I did
actually want to push both of them, but I'd rather push them
separately! So I'm backing out the combined blob, and I'll re-push
them with their proper comments and explanations.
This commit is contained in:
56
sshrsag.c
56
sshrsag.c
@ -14,12 +14,49 @@
|
||||
static void invent_firstbits(unsigned *one, unsigned *two,
|
||||
unsigned min_separation);
|
||||
|
||||
int rsa_generate(RSAKey *key, int bits, ProgressReceiver *prog)
|
||||
int rsa_generate(RSAKey *key, int bits, progfn_t pfn,
|
||||
void *pfnparam)
|
||||
{
|
||||
unsigned pfirst, qfirst;
|
||||
|
||||
key->sshk.vt = &ssh_rsa;
|
||||
|
||||
/*
|
||||
* Set up the phase limits for the progress report. We do this
|
||||
* by passing minus the phase number.
|
||||
*
|
||||
* For prime generation: our initial filter finds things
|
||||
* coprime to everything below 2^16. Computing the product of
|
||||
* (p-1)/p for all prime p below 2^16 gives about 20.33; so
|
||||
* among B-bit integers, one in every 20.33 will get through
|
||||
* the initial filter to be a candidate prime.
|
||||
*
|
||||
* Meanwhile, we are searching for primes in the region of 2^B;
|
||||
* since pi(x) ~ x/log(x), when x is in the region of 2^B, the
|
||||
* prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
|
||||
* 1/0.6931B. So the chance of any given candidate being prime
|
||||
* is 20.33/0.6931B, which is roughly 29.34 divided by B.
|
||||
*
|
||||
* So now we have this probability P, we're looking at an
|
||||
* exponential distribution with parameter P: we will manage in
|
||||
* one attempt with probability P, in two with probability
|
||||
* P(1-P), in three with probability P(1-P)^2, etc. The
|
||||
* probability that we have still not managed to find a prime
|
||||
* after N attempts is (1-P)^N.
|
||||
*
|
||||
* We therefore inform the progress indicator of the number B
|
||||
* (29.34/B), so that it knows how much to increment by each
|
||||
* time. We do this in 16-bit fixed point, so 29.34 becomes
|
||||
* 0x1D.57C4.
|
||||
*/
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 1, 0x10000);
|
||||
pfn(pfnparam, PROGFN_EXP_PHASE, 1, -0x1D57C4 / (bits / 2));
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 2, 0x10000);
|
||||
pfn(pfnparam, PROGFN_EXP_PHASE, 2, -0x1D57C4 / (bits - bits / 2));
|
||||
pfn(pfnparam, PROGFN_PHASE_EXTENT, 3, 0x4000);
|
||||
pfn(pfnparam, PROGFN_LIN_PHASE, 3, 5);
|
||||
pfn(pfnparam, PROGFN_READY, 0, 0);
|
||||
|
||||
/*
|
||||
* We don't generate e; we just use a standard one always.
|
||||
*/
|
||||
@ -43,23 +80,15 @@ int rsa_generate(RSAKey *key, int bits, ProgressReceiver *prog)
|
||||
int pbits = bits - qbits;
|
||||
assert(pbits >= qbits);
|
||||
|
||||
ProgressPhase phase_p = primegen_add_progress_phase(prog, pbits);
|
||||
ProgressPhase phase_q = primegen_add_progress_phase(prog, qbits);
|
||||
progress_ready(prog);
|
||||
|
||||
PrimeCandidateSource *pcs;
|
||||
|
||||
progress_start_phase(prog, phase_p);
|
||||
pcs = pcs_new_with_firstbits(pbits, pfirst, NFIRSTBITS);
|
||||
pcs_avoid_residue_small(pcs, RSA_EXPONENT, 1);
|
||||
mp_int *p = primegen(pcs, prog);
|
||||
progress_report_phase_complete(prog);
|
||||
mp_int *p = primegen(pcs, 1, pfn, pfnparam);
|
||||
|
||||
progress_start_phase(prog, phase_q);
|
||||
pcs = pcs_new_with_firstbits(qbits, qfirst, NFIRSTBITS);
|
||||
pcs_avoid_residue_small(pcs, RSA_EXPONENT, 1);
|
||||
mp_int *q = primegen(pcs, prog);
|
||||
progress_report_phase_complete(prog);
|
||||
mp_int *q = primegen(pcs, 2, pfn, pfnparam);
|
||||
|
||||
/*
|
||||
* Ensure p > q, by swapping them if not.
|
||||
@ -79,17 +108,22 @@ int rsa_generate(RSAKey *key, int bits, ProgressReceiver *prog)
|
||||
* the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
|
||||
* and (q^-1 mod p).
|
||||
*/
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 1);
|
||||
mp_int *modulus = mp_mul(p, q);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 2);
|
||||
mp_int *pm1 = mp_copy(p);
|
||||
mp_sub_integer_into(pm1, pm1, 1);
|
||||
mp_int *qm1 = mp_copy(q);
|
||||
mp_sub_integer_into(qm1, qm1, 1);
|
||||
mp_int *phi_n = mp_mul(pm1, qm1);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 3);
|
||||
mp_free(pm1);
|
||||
mp_free(qm1);
|
||||
mp_int *private_exponent = mp_invert(exponent, phi_n);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 4);
|
||||
mp_free(phi_n);
|
||||
mp_int *iqmp = mp_invert(q, p);
|
||||
pfn(pfnparam, PROGFN_PROGRESS, 3, 5);
|
||||
|
||||
/*
|
||||
* Populate the returned structure.
|
||||
|
Reference in New Issue
Block a user