From 68ee8531fb0b306ff91c009f1bad2ba122f63f55 Mon Sep 17 00:00:00 2001 From: Simon Tatham Date: Thu, 14 Sep 2000 15:02:50 +0000 Subject: [PATCH] 2-3-4 tree routines [originally from svn r590] --- tree234.c | 695 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 695 insertions(+) create mode 100644 tree234.c diff --git a/tree234.c b/tree234.c new file mode 100644 index 00000000..1fedd767 --- /dev/null +++ b/tree234.c @@ -0,0 +1,695 @@ +/* + * tree234.c: reasonably generic 2-3-4 tree routines. Currently + * supports insert, delete, find and iterate operations. + */ + +#include +#include + +#include "tree234.h" + +#define mknew(typ) ( (typ *) malloc (sizeof (typ)) ) +#define sfree free + +#ifdef TEST +#define LOG(x) (printf x) +#else +#define LOG(x) +#endif + +struct tree234_Tag { + node234 *root; + cmpfn234 cmp; +}; + +struct node234_Tag { + node234 *parent; + node234 *kids[4]; + void *elems[3]; +}; + +/* + * Create a 2-3-4 tree. + */ +tree234 *newtree234(cmpfn234 cmp) { + tree234 *ret = mknew(tree234); + LOG(("created tree %p\n", ret)); + ret->root = NULL; + ret->cmp = cmp; + return ret; +} + +/* + * Free a 2-3-4 tree (not including freeing the elements). + */ +static void freenode234(node234 *n) { + if (!n) + return; + freenode234(n->kids[0]); + freenode234(n->kids[1]); + freenode234(n->kids[2]); + freenode234(n->kids[3]); + sfree(n); +} +void freetree234(tree234 *t) { + freenode234(t->root); + sfree(t); +} + +/* + * Add an element e to a 2-3-4 tree t. Returns e on success, or if + * an existing element compares equal, returns that. + */ +void *add234(tree234 *t, void *e) { + node234 *n, **np, *left, *right; + void *orig_e = e; + int c; + + LOG(("adding node %p to tree %p\n", e, t)); + if (t->root == NULL) { + t->root = mknew(node234); + t->root->elems[1] = t->root->elems[2] = NULL; + t->root->kids[0] = t->root->kids[1] = NULL; + t->root->kids[2] = t->root->kids[3] = NULL; + t->root->parent = NULL; + t->root->elems[0] = e; + LOG((" created root %p\n", t->root)); + return orig_e; + } + + np = &t->root; + while (*np) { + n = *np; + LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n", + n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], + n->kids[2], n->elems[2], n->kids[3])); + if ((c = t->cmp(e, n->elems[0])) < 0) + np = &n->kids[0]; + else if (c == 0) + return n->elems[0]; /* already exists */ + else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) + np = &n->kids[1]; + else if (c == 0) + return n->elems[1]; /* already exists */ + else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) + np = &n->kids[2]; + else if (c == 0) + return n->elems[2]; /* already exists */ + else + np = &n->kids[3]; + LOG((" moving to child %d (%p)\n", np - n->kids, *np)); + } + + /* + * We need to insert the new element in n at position np. + */ + left = NULL; + right = NULL; + while (n) { + LOG((" at %p: %p [%p] %p [%p] %p [%p] %p\n", + n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], + n->kids[2], n->elems[2], n->kids[3])); + LOG((" need to insert %p [%p] %p at position %d\n", + left, e, right, np - n->kids)); + if (n->elems[1] == NULL) { + /* + * Insert in a 2-node; simple. + */ + if (np == &n->kids[0]) { + LOG((" inserting on left of 2-node\n")); + n->kids[2] = n->kids[1]; + n->elems[1] = n->elems[0]; + n->kids[1] = right; + n->elems[0] = e; + n->kids[0] = left; + } else { /* np == &n->kids[1] */ + LOG((" inserting on right of 2-node\n")); + n->kids[2] = right; + n->elems[1] = e; + n->kids[1] = left; + } + if (n->kids[0]) n->kids[0]->parent = n; + if (n->kids[1]) n->kids[1]->parent = n; + if (n->kids[2]) n->kids[2]->parent = n; + LOG((" done\n")); + break; + } else if (n->elems[2] == NULL) { + /* + * Insert in a 3-node; simple. + */ + if (np == &n->kids[0]) { + LOG((" inserting on left of 3-node\n")); + n->kids[3] = n->kids[2]; + n->elems[2] = n->elems[1]; + n->kids[2] = n->kids[1]; + n->elems[1] = n->elems[0]; + n->kids[1] = right; + n->elems[0] = e; + n->kids[0] = left; + } else if (np == &n->kids[1]) { + LOG((" inserting in middle of 3-node\n")); + n->kids[3] = n->kids[2]; + n->elems[2] = n->elems[1]; + n->kids[2] = right; + n->elems[1] = e; + n->kids[1] = left; + } else { /* np == &n->kids[2] */ + LOG((" inserting on right of 3-node\n")); + n->kids[3] = right; + n->elems[2] = e; + n->kids[2] = left; + } + if (n->kids[0]) n->kids[0]->parent = n; + if (n->kids[1]) n->kids[1]->parent = n; + if (n->kids[2]) n->kids[2]->parent = n; + if (n->kids[3]) n->kids[3]->parent = n; + LOG((" done\n")); + break; + } else { + node234 *m = mknew(node234); + m->parent = n->parent; + LOG((" splitting a 4-node; created new node %p\n", m)); + /* + * Insert in a 4-node; split into a 2-node and a + * 3-node, and move focus up a level. + * + * I don't think it matters which way round we put the + * 2 and the 3. For simplicity, we'll put the 3 first + * always. + */ + if (np == &n->kids[0]) { + m->kids[0] = left; + m->elems[0] = e; + m->kids[1] = right; + m->elems[1] = n->elems[0]; + m->kids[2] = n->kids[1]; + e = n->elems[1]; + n->kids[0] = n->kids[2]; + n->elems[0] = n->elems[2]; + n->kids[1] = n->kids[3]; + } else if (np == &n->kids[1]) { + m->kids[0] = n->kids[0]; + m->elems[0] = n->elems[0]; + m->kids[1] = left; + m->elems[1] = e; + m->kids[2] = right; + e = n->elems[1]; + n->kids[0] = n->kids[2]; + n->elems[0] = n->elems[2]; + n->kids[1] = n->kids[3]; + } else if (np == &n->kids[2]) { + m->kids[0] = n->kids[0]; + m->elems[0] = n->elems[0]; + m->kids[1] = n->kids[1]; + m->elems[1] = n->elems[1]; + m->kids[2] = left; + /* e = e; */ + n->kids[0] = right; + n->elems[0] = n->elems[2]; + n->kids[1] = n->kids[3]; + } else { /* np == &n->kids[3] */ + m->kids[0] = n->kids[0]; + m->elems[0] = n->elems[0]; + m->kids[1] = n->kids[1]; + m->elems[1] = n->elems[1]; + m->kids[2] = n->kids[2]; + n->kids[0] = left; + n->elems[0] = e; + n->kids[1] = right; + e = n->elems[2]; + } + m->kids[3] = n->kids[3] = n->kids[2] = NULL; + m->elems[2] = n->elems[2] = n->elems[1] = NULL; + if (m->kids[0]) m->kids[0]->parent = m; + if (m->kids[1]) m->kids[1]->parent = m; + if (m->kids[2]) m->kids[2]->parent = m; + if (n->kids[0]) n->kids[0]->parent = n; + if (n->kids[1]) n->kids[1]->parent = n; + LOG((" left (%p): %p [%p] %p [%p] %p\n", m, + m->kids[0], m->elems[0], + m->kids[1], m->elems[1], + m->kids[2])); + LOG((" right (%p): %p [%p] %p\n", n, + n->kids[0], n->elems[0], + n->kids[1])); + left = m; + right = n; + } + if (n->parent) + np = (n->parent->kids[0] == n ? &n->parent->kids[0] : + n->parent->kids[1] == n ? &n->parent->kids[1] : + n->parent->kids[2] == n ? &n->parent->kids[2] : + &n->parent->kids[3]); + n = n->parent; + } + + /* + * If we've come out of here by `break', n will still be + * non-NULL and we've finished. If we've come here because n is + * NULL, we need to create a new root for the tree because the + * old one has just split into two. + */ + if (!n) { + LOG((" root is overloaded, split into two\n")); + t->root = mknew(node234); + t->root->kids[0] = left; + t->root->elems[0] = e; + t->root->kids[1] = right; + t->root->elems[1] = NULL; + t->root->kids[2] = NULL; + t->root->elems[2] = NULL; + t->root->kids[3] = NULL; + t->root->parent = NULL; + if (t->root->kids[0]) t->root->kids[0]->parent = t->root; + if (t->root->kids[1]) t->root->kids[1]->parent = t->root; + LOG((" new root is %p [%p] %p\n", + t->root->kids[0], t->root->elems[0], t->root->kids[1])); + } + + return orig_e; +} + +/* + * Find an element e in a 2-3-4 tree t. Returns NULL if not found. + * e is always passed as the first argument to cmp, so cmp can be + * an asymmetric function if desired. cmp can also be passed as + * NULL, in which case the compare function from the tree proper + * will be used. + */ +void *find234(tree234 *t, void *e, cmpfn234 cmp) { + node234 *n; + int c; + + if (t->root == NULL) + return NULL; + + if (cmp == NULL) + cmp = t->cmp; + + n = t->root; + while (n) { + if ( (c = t->cmp(e, n->elems[0])) < 0) + n = n->kids[0]; + else if (c == 0) + return n->elems[0]; + else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) + n = n->kids[1]; + else if (c == 0) + return n->elems[1]; + else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) + n = n->kids[2]; + else if (c == 0) + return n->elems[2]; + else + n = n->kids[3]; + } + + /* + * We've found our way to the bottom of the tree and we know + * where we would insert this node if we wanted to. But it + * isn't there. + */ + return NULL; +} + +/* + * Delete an element e in a 2-3-4 tree. Does not free the element, + * merely removes all links to it from the tree nodes. + */ +void *del234(tree234 *t, void *e) { + node234 *n; + int ei = -1; + + n = t->root; + LOG(("deleting %p from tree %p\n", e, t)); + while (1) { + while (n) { + int c; + int ki; + node234 *sub; + + LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n", + n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], + n->kids[2], n->elems[2], n->kids[3])); + if ((c = t->cmp(e, n->elems[0])) < 0) { + ki = 0; + } else if (c == 0) { + ei = 0; break; + } else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) { + ki = 1; + } else if (c == 0) { + ei = 1; break; + } else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) { + ki = 2; + } else if (c == 0) { + ei = 2; break; + } else { + ki = 3; + } + /* + * Recurse down to subtree ki. If it has only one element, + * we have to do some transformation to start with. + */ + LOG((" moving to subtree %d\n", ki)); + sub = n->kids[ki]; + if (!sub->elems[1]) { + LOG((" subtree has only one element!\n", ki)); + if (ki > 0 && n->kids[ki-1]->elems[1]) { + /* + * Case 3a, left-handed variant. Child ki has + * only one element, but child ki-1 has two or + * more. So we need to move a subtree from ki-1 + * to ki. + * + * . C . . B . + * / \ -> / \ + * [more] a A b B c d D e [more] a A b c C d D e + */ + node234 *sib = n->kids[ki-1]; + int lastelem = (sib->elems[2] ? 2 : + sib->elems[1] ? 1 : 0); + sub->kids[2] = sub->kids[1]; + sub->elems[1] = sub->elems[0]; + sub->kids[1] = sub->kids[0]; + sub->elems[0] = n->elems[ki-1]; + sub->kids[0] = sib->kids[lastelem+1]; + n->elems[ki-1] = sib->elems[lastelem]; + sib->kids[lastelem+1] = NULL; + sib->elems[lastelem] = NULL; + LOG((" case 3a left\n")); + } else if (ki < 3 && n->kids[ki+1] && + n->kids[ki+1]->elems[1]) { + /* + * Case 3a, right-handed variant. ki has only + * one element but ki+1 has two or more. Move a + * subtree from ki+1 to ki. + * + * . B . . C . + * / \ -> / \ + * a A b c C d D e [more] a A b B c d D e [more] + */ + node234 *sib = n->kids[ki+1]; + int j; + sub->elems[1] = n->elems[ki]; + sub->kids[2] = sib->kids[0]; + n->elems[ki] = sib->elems[0]; + sib->kids[0] = sib->kids[1]; + for (j = 0; j < 2 && sib->elems[j+1]; j++) { + sib->kids[j+1] = sib->kids[j+2]; + sib->elems[j] = sib->elems[j+1]; + } + sib->kids[j+1] = NULL; + sib->elems[j] = NULL; + LOG((" case 3a right\n")); + } else { + /* + * Case 3b. ki has only one element, and has no + * neighbour with more than one. So pick a + * neighbour and merge it with ki, taking an + * element down from n to go in the middle. + * + * . B . . + * / \ -> | + * a A b c C d a A b B c C d + * + * (Since at all points we have avoided + * descending to a node with only one element, + * we can be sure that n is not reduced to + * nothingness by this move, _unless_ it was + * the very first node, ie the root of the + * tree. In that case we remove the now-empty + * root and replace it with its single large + * child as shown.) + */ + node234 *sib; + int j; + + if (ki > 0) + ki--; + sib = n->kids[ki]; + sub = n->kids[ki+1]; + + sub->kids[3] = sub->kids[1]; + sub->elems[2] = sub->elems[0]; + sub->kids[2] = sub->kids[0]; + sub->elems[1] = n->elems[ki]; + sub->kids[1] = sib->kids[1]; + sub->elems[0] = sib->elems[0]; + sub->kids[0] = sib->kids[0]; + + sfree(sib); + + /* + * That's built the big node in sub. Now we + * need to remove the reference to sib in n. + */ + for (j = ki; j < 3 && n->kids[j+1]; j++) { + n->kids[j] = n->kids[j+1]; + n->elems[j] = j<2 ? n->elems[j+1] : NULL; + } + n->kids[j] = NULL; + if (j < 3) n->elems[j] = NULL; + LOG((" case 3b\n")); + + if (!n->elems[0]) { + /* + * The root is empty and needs to be + * removed. + */ + LOG((" shifting root!\n")); + t->root = sub; + sub->parent = NULL; + sfree(n); + } + } + } + n = sub; + } + if (ei==-1) + return; /* nothing to do; `already removed' */ + + /* + * Treat special case: this is the one remaining item in + * the tree. n is the tree root (no parent), has one + * element (no elems[1]), and has no kids (no kids[0]). + */ + if (!n->parent && !n->elems[1] && !n->kids[0]) { + LOG((" removed last element in tree\n")); + sfree(n); + t->root = NULL; + return; + } + + /* + * Now we have the element we want, as n->elems[ei], and we + * have also arranged for that element not to be the only + * one in its node. So... + */ + + if (!n->kids[0] && n->elems[1]) { + /* + * Case 1. n is a leaf node with more than one element, + * so it's _really easy_. Just delete the thing and + * we're done. + */ + int i; + LOG((" case 1\n")); + for (i = ei; i < 3 && n->elems[i+1]; i++) + n->elems[i] = n->elems[i+1]; + n->elems[i] = NULL; + return; /* finished! */ + } else if (n->kids[ei]->elems[1]) { + /* + * Case 2a. n is an internal node, and the root of the + * subtree to the left of e has more than one element. + * So find the predecessor p to e (ie the largest node + * in that subtree), place it where e currently is, and + * then start the deletion process over again on the + * subtree with p as target. + */ + node234 *m = n->kids[ei]; + void *target; + LOG((" case 2a\n")); + while (m->kids[0]) { + m = (m->kids[3] ? m->kids[3] : + m->kids[2] ? m->kids[2] : + m->kids[1] ? m->kids[1] : m->kids[0]); + } + target = (m->elems[2] ? m->elems[2] : + m->elems[1] ? m->elems[1] : m->elems[0]); + n->elems[ei] = target; + n = n->kids[ei]; + e = target; + } else if (n->kids[ei+1]->elems[1]) { + /* + * Case 2b, symmetric to 2a but s/left/right/ and + * s/predecessor/successor/. (And s/largest/smallest/). + */ + node234 *m = n->kids[ei+1]; + void *target; + LOG((" case 2b\n")); + while (m->kids[0]) { + m = m->kids[0]; + } + target = m->elems[0]; + n->elems[ei] = target; + n = n->kids[ei+1]; + e = target; + } else { + /* + * Case 2c. n is an internal node, and the subtrees to + * the left and right of e both have only one element. + * So combine the two subnodes into a single big node + * with their own elements on the left and right and e + * in the middle, then restart the deletion process on + * that subtree, with e still as target. + */ + node234 *a = n->kids[ei], *b = n->kids[ei+1]; + int j; + + LOG((" case 2c\n")); + a->elems[1] = n->elems[ei]; + a->kids[2] = b->kids[0]; + a->elems[2] = b->elems[0]; + a->kids[3] = b->kids[1]; + sfree(b); + /* + * That's built the big node in a, and destroyed b. Now + * remove the reference to b (and e) in n. + */ + for (j = ei; j < 2 && n->elems[j+1]; j++) { + n->elems[j] = n->elems[j+1]; + n->kids[j+1] = n->kids[j+2]; + } + n->elems[j] = NULL; + n->kids[j+1] = NULL; + /* + * Now go round the deletion process again, with n + * pointing at the new big node and e still the same. + */ + n = a; + } + } +} + +/* + * Iterate over the elements of a tree234, in order. + */ +void *first234(tree234 *t, enum234 *e) { + node234 *n = t->root; + if (!n) + return NULL; + while (n->kids[0]) + n = n->kids[0]; + e->node = n; + e->posn = 0; + return n->elems[0]; +} + +void *next234(enum234 *e) { + node234 *n = e->node; + int pos = e->posn; + + if (n->kids[pos+1]) { + n = n->kids[pos+1]; + while (n->kids[0]) + n = n->kids[0]; + e->node = n; + e->posn = 0; + return n->elems[0]; + } + + if (pos == 0 && n->elems[1]) { + e->posn = 1; + return n->elems[1]; + } + + do { + node234 *nn = n->parent; + if (nn == NULL) + return NULL; /* end of tree */ + pos = (nn->kids[0] == n ? 0 : + nn->kids[1] == n ? 1 : + nn->kids[2] == n ? 2 : 3); + n = nn; + } while (pos == 3 || n->kids[pos+1] == NULL); + + e->node = n; + e->posn = pos; + return n->elems[pos]; +} + +#ifdef TEST + +int pnode(node234 *n, int level) { + printf("%*s%p\n", level*4, "", n); + if (n->kids[0]) pnode(n->kids[0], level+1); + if (n->elems[0]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[0]); + if (n->kids[1]) pnode(n->kids[1], level+1); + if (n->elems[1]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[1]); + if (n->kids[2]) pnode(n->kids[2], level+1); + if (n->elems[2]) printf("%*s\"%s\"\n", level*4+4, "", n->elems[2]); + if (n->kids[3]) pnode(n->kids[3], level+1); +} +int ptree(tree234 *t) { + if (t->root) + pnode(t->root, 0); + else + printf("empty tree\n"); +} + +int cmp(void *av, void *bv) { + char *a = (char *)av; + char *b = (char *)bv; + return strcmp(a, b); +} + +int main(void) { + tree234 *t = newtree234(cmp); + + add234(t, "Richard"); + add234(t, "Of"); + add234(t, "York"); + add234(t, "Gave"); + add234(t, "Battle"); + add234(t, "In"); + add234(t, "Vain"); + add234(t, "Rabbits"); + add234(t, "On"); + add234(t, "Your"); + add234(t, "Garden"); + add234(t, "Bring"); + add234(t, "Invisible"); + add234(t, "Vegetables"); + + ptree(t); + del234(t, find234(t, "Richard", NULL)); + ptree(t); + del234(t, find234(t, "Of", NULL)); + ptree(t); + del234(t, find234(t, "York", NULL)); + ptree(t); + del234(t, find234(t, "Gave", NULL)); + ptree(t); + del234(t, find234(t, "Battle", NULL)); + ptree(t); + del234(t, find234(t, "In", NULL)); + ptree(t); + del234(t, find234(t, "Vain", NULL)); + ptree(t); + del234(t, find234(t, "Rabbits", NULL)); + ptree(t); + del234(t, find234(t, "On", NULL)); + ptree(t); + del234(t, find234(t, "Your", NULL)); + ptree(t); + del234(t, find234(t, "Garden", NULL)); + ptree(t); + del234(t, find234(t, "Bring", NULL)); + ptree(t); + del234(t, find234(t, "Invisible", NULL)); + ptree(t); + del234(t, find234(t, "Vegetables", NULL)); + ptree(t); +} +#endif