1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00

Factor KEXINIT analysis out into its own function.

The function takes the two KEXINIT packets in their string form,
together with a list of mappings from names to known algorithm
implementations, and returns the selected one of each kind, along with
all the other necessary auxiliary stuff.
This commit is contained in:
Simon Tatham 2018-10-07 13:51:04 +01:00
parent 3df80af868
commit 7de8801e73
3 changed files with 365 additions and 211 deletions

1
ssh.h
View File

@ -1479,6 +1479,7 @@ int first_in_commasep_string(char const *needle, char const *haystack,
int haylen); int haylen);
int in_commasep_string(char const *needle, char const *haystack, int haylen); int in_commasep_string(char const *needle, char const *haystack, int haylen);
void add_to_commasep(strbuf *buf, const char *data); void add_to_commasep(strbuf *buf, const char *data);
int get_commasep_word(ptrlen *list, ptrlen *word);
int verify_ssh_manual_host_key( int verify_ssh_manual_host_key(
Conf *conf, const char *fingerprint, ssh_key *key); Conf *conf, const char *fingerprint, ssh_key *key);

View File

@ -146,6 +146,14 @@ typedef enum RekeyClass {
RK_GSS_UPDATE RK_GSS_UPDATE
} RekeyClass; } RekeyClass;
typedef struct transport_direction {
const struct ssh2_cipheralg *cipher;
const struct ssh2_macalg *mac;
int etm_mode;
const struct ssh_compression_alg *comp;
int comp_delayed;
} transport_direction;
struct ssh2_transport_state { struct ssh2_transport_state {
int crState; int crState;
@ -201,13 +209,7 @@ struct ssh2_transport_state {
Bignum p, g, e, f, K; Bignum p, g, e, f, K;
strbuf *client_kexinit, *server_kexinit; strbuf *client_kexinit, *server_kexinit;
int kex_init_value, kex_reply_value; int kex_init_value, kex_reply_value;
struct { transport_direction in, out;
const struct ssh2_cipheralg *cipher;
const struct ssh2_macalg *mac;
int etm_mode;
const struct ssh_compression_alg *comp;
int comp_delayed;
} in, out;
ptrlen hostkeydata, sigdata; ptrlen hostkeydata, sigdata;
char *keystr, *fingerprint; char *keystr, *fingerprint;
ssh_key *hkey; /* actual host key */ ssh_key *hkey; /* actual host key */
@ -901,6 +903,217 @@ static void ssh2_write_kexinit_lists(
put_stringz(pktout, ""); put_stringz(pktout, "");
} }
static int ssh2_scan_kexinits(
ptrlen client_kexinit, ptrlen server_kexinit,
struct kexinit_algorithm kexlists[NKEXLIST][MAXKEXLIST],
const struct ssh_kex **kex_alg, const ssh_keyalg **hostkey_alg,
transport_direction *cs, transport_direction *sc,
int *warn_kex, int *warn_hk, int *warn_cscipher, int *warn_sccipher,
Ssh *ssh, int *ignore_guess_cs_packet, int *ignore_guess_sc_packet,
int *n_server_hostkeys, int server_hostkeys[MAXKEXLIST])
{
BinarySource client[1], server[1];
int i;
int guess_correct;
ptrlen clists[NKEXLIST], slists[NKEXLIST];
const struct kexinit_algorithm *selected[NKEXLIST];
BinarySource_BARE_INIT(client, client_kexinit.ptr, client_kexinit.len);
BinarySource_BARE_INIT(server, server_kexinit.ptr, server_kexinit.len);
/* Skip packet type bytes and random cookies. */
get_data(client, 1 + 16);
get_data(server, 1 + 16);
guess_correct = TRUE;
/* Find the matching string in each list, and map it to its
* kexinit_algorithm structure. */
for (i = 0; i < NKEXLIST; i++) {
ptrlen clist, slist, cword, sword, found;
int cfirst, sfirst, j;
clists[i] = get_string(client);
slists[i] = get_string(server);
if (get_err(client) || get_err(server)) {
/* Report a better error than the spurious "Couldn't
* agree" that we'd generate if we pressed on regardless
* and treated the empty get_string() result as genuine */
ssh_proto_error(ssh, "KEXINIT packet was incomplete");
return FALSE;
}
for (cfirst = TRUE, clist = clists[i];
get_commasep_word(&clist, &cword); cfirst = FALSE)
for (sfirst = TRUE, slist = slists[i];
get_commasep_word(&slist, &sword); sfirst = FALSE)
if (ptrlen_eq_ptrlen(cword, sword)) {
found = cword;
goto found_match;
}
/* No matching string found in the two lists. Delay reporting
* a fatal error until below, because sometimes it turns out
* not to be fatal. */
selected[i] = NULL;
/*
* However, even if a failure to agree on any algorithm at all
* is not completely fatal (e.g. because it's the MAC
* negotiation for a cipher that comes with a built-in MAC),
* it still invalidates the guessed key exchange packet. (RFC
* 4253 section 7, not contradicted by OpenSSH's
* PROTOCOL.chacha20poly1305 or as far as I can see by their
* code.)
*/
guess_correct = FALSE;
continue;
found_match:
selected[i] = NULL;
for (j = 0; j < MAXKEXLIST; j++) {
if (ptrlen_eq_string(found, kexlists[i][j].name)) {
selected[i] = &kexlists[i][j];
break;
}
}
assert(selected[i]); /* kexlists[] must cover one of the inputs */
/*
* If the kex or host key algorithm is not the first one in
* both sides' lists, that means the guessed key exchange
* packet (if any) is officially wrong.
*/
if ((i == KEXLIST_KEX || i == KEXLIST_HOSTKEY) && !(cfirst || sfirst))
guess_correct = FALSE;
}
/*
* Skip language strings in both KEXINITs, and read the flags
* saying whether a guessed KEX packet follows.
*/
get_string(client);
get_string(client);
get_string(server);
get_string(server);
if (ignore_guess_cs_packet)
*ignore_guess_cs_packet = get_bool(client) && !guess_correct;
if (ignore_guess_sc_packet)
*ignore_guess_sc_packet = get_bool(server) && !guess_correct;
/*
* Now transcribe the selected algorithm set into the output data.
*/
for (i = 0; i < NKEXLIST; i++) {
const struct kexinit_algorithm *alg;
/*
* If we've already selected a cipher which requires a
* particular MAC, then just select that. This is the case in
* which it's not a fatal error if the actual MAC string lists
* didn't include any matching error.
*/
if (i == KEXLIST_CSMAC && cs->cipher &&
cs->cipher->required_mac) {
cs->mac = cs->cipher->required_mac;
cs->etm_mode = !!(cs->mac->etm_name);
continue;
}
if (i == KEXLIST_SCMAC && sc->cipher &&
sc->cipher->required_mac) {
sc->mac = sc->cipher->required_mac;
sc->etm_mode = !!(sc->mac->etm_name);
continue;
}
alg = selected[i];
if (!alg) {
/*
* Otherwise, any match failure _is_ a fatal error.
*/
ssh_sw_abort(ssh, "Couldn't agree a %s (available: %.*s)",
kexlist_descr[i], PTRLEN_PRINTF(slists[i]));
return FALSE;
}
switch (i) {
case KEXLIST_KEX:
*kex_alg = alg->u.kex.kex;
*warn_kex = alg->u.kex.warn;
break;
case KEXLIST_HOSTKEY:
/*
* Ignore an unexpected/inappropriate offer of "null",
* we offer "null" when we're willing to use GSS KEX,
* but it is only acceptable when GSSKEX is actually
* selected.
*/
if (alg->u.hk.hostkey == NULL &&
(*kex_alg)->main_type != KEXTYPE_GSS)
continue;
*hostkey_alg = alg->u.hk.hostkey;
*warn_hk = alg->u.hk.warn;
break;
case KEXLIST_CSCIPHER:
cs->cipher = alg->u.cipher.cipher;
*warn_cscipher = alg->u.cipher.warn;
break;
case KEXLIST_SCCIPHER:
sc->cipher = alg->u.cipher.cipher;
*warn_sccipher = alg->u.cipher.warn;
break;
case KEXLIST_CSMAC:
cs->mac = alg->u.mac.mac;
cs->etm_mode = alg->u.mac.etm;
break;
case KEXLIST_SCMAC:
sc->mac = alg->u.mac.mac;
sc->etm_mode = alg->u.mac.etm;
break;
case KEXLIST_CSCOMP:
cs->comp = alg->u.comp.comp;
cs->comp_delayed = alg->u.comp.delayed;
break;
case KEXLIST_SCCOMP:
sc->comp = alg->u.comp.comp;
sc->comp_delayed = alg->u.comp.delayed;
break;
default:
assert(FALSE && "Bad list index in scan_kexinits");
}
}
if (server_hostkeys) {
/*
* Finally, make an auxiliary pass over the server's host key
* list to find all the host key algorithms offered by the
* server which we know about at all, whether we selected each
* one or not. We return these as a list of indices into the
* constant hostkey_algs[] array.
*/
*n_server_hostkeys = 0;
for (i = 0; i < lenof(hostkey_algs); i++)
if (in_commasep_string(hostkey_algs[i].alg->ssh_id,
slists[KEXLIST_HOSTKEY].ptr,
slists[KEXLIST_HOSTKEY].len))
server_hostkeys[(*n_server_hostkeys)++] = i;
}
return TRUE;
}
static void ssh2_transport_process_queue(PacketProtocolLayer *ppl) static void ssh2_transport_process_queue(PacketProtocolLayer *ppl)
{ {
struct ssh2_transport_state *s = struct ssh2_transport_state *s =
@ -1026,238 +1239,146 @@ static void ssh2_transport_process_queue(PacketProtocolLayer *ppl)
put_data(s->server_kexinit, get_ptr(pktin), get_avail(pktin)); put_data(s->server_kexinit, get_ptr(pktin), get_avail(pktin));
/* /*
* Now examine the other side's KEXINIT to see what we're up * Work through the two KEXINIT packets in parallel to find the
* to. * selected algorithm identifiers.
*/ */
{ {
ptrlen str; int nhk, hks[MAXKEXLIST], i, j;
int i, j;
s->kex_alg = NULL; if (!ssh2_scan_kexinits(
s->hostkey_alg = NULL; ptrlen_from_strbuf(s->client_kexinit),
s->in.cipher = s->out.cipher = NULL; ptrlen_from_strbuf(s->server_kexinit),
s->in.mac = s->out.mac = NULL; s->kexlists, &s->kex_alg, &s->hostkey_alg, &s->out, &s->in,
s->in.comp = s->out.comp = NULL; &s->warn_kex, &s->warn_hk, &s->warn_cscipher,
s->in.comp_delayed = s->out.comp_delayed = FALSE; &s->warn_sccipher, s->ppl.ssh, NULL, &s->ignorepkt, &nhk, hks))
s->warn_kex = s->warn_hk = FALSE; return; /* FALSE means a fatal error function was called */
s->warn_cscipher = s->warn_sccipher = FALSE;
get_data(pktin, 16); /* skip garbage cookie */ /*
* In addition to deciding which host key we're actually going
* to use, we should make a list of the host keys offered by
* the server which we _don't_ have cached. These will be
* offered as cross-certification options by ssh_get_specials.
*
* We also count the key we're currently using for KEX as one
* we've already got, because by the time this menu becomes
* visible, it will be.
*/
s->n_uncert_hostkeys = 0;
s->guessok = FALSE; for (i = 0; i < nhk; i++) {
for (i = 0; i < NKEXLIST; i++) { j = hks[i];
str = get_string(pktin); if (hostkey_algs[j].alg != s->hostkey_alg &&
if (get_err(pktin)) { !have_ssh_host_key(s->savedhost, s->savedport,
ssh_proto_error(s->ppl.ssh, "KEXINIT packet was incomplete"); hostkey_algs[j].alg->cache_id)) {
return; s->uncert_hostkeys[s->n_uncert_hostkeys++] = j;
} }
}
}
/* If we've already selected a cipher which requires a s->exhash = ssh_hash_new(s->kex_alg->hash);
* particular MAC, then just select that, and don't even put_stringz(s->exhash, s->client_greeting);
* bother looking through the server's KEXINIT string for put_stringz(s->exhash, s->server_greeting);
* MACs. */ put_string(s->exhash, s->client_kexinit->u, s->client_kexinit->len);
if (i == KEXLIST_CSMAC && s->out.cipher && put_string(s->exhash, s->server_kexinit->u, s->server_kexinit->len);
s->out.cipher->required_mac) {
s->out.mac = s->out.cipher->required_mac;
s->out.etm_mode = !!(s->out.mac->etm_name);
goto matched;
}
if (i == KEXLIST_SCMAC && s->in.cipher &&
s->in.cipher->required_mac) {
s->in.mac = s->in.cipher->required_mac;
s->in.etm_mode = !!(s->in.mac->etm_name);
goto matched;
}
for (j = 0; j < MAXKEXLIST; j++) { if (s->warn_kex) {
struct kexinit_algorithm *alg = &s->kexlists[i][j]; s->dlgret = seat_confirm_weak_crypto_primitive(
if (alg->name == NULL) break; s->ppl.seat, "key-exchange algorithm", s->kex_alg->name,
if (in_commasep_string(alg->name, str.ptr, str.len)) { ssh2_transport_dialog_callback, s);
/* We've found a matching algorithm. */ crMaybeWaitUntilV(s->dlgret >= 0);
if (i == KEXLIST_KEX || i == KEXLIST_HOSTKEY) { if (s->dlgret == 0) {
/* Check if we might need to ignore first kex pkt */ ssh_user_close(s->ppl.ssh, "User aborted at kex warning");
if (j != 0 ||
!first_in_commasep_string(alg->name,
str.ptr, str.len))
s->guessok = FALSE;
}
if (i == KEXLIST_KEX) {
s->kex_alg = alg->u.kex.kex;
s->warn_kex = alg->u.kex.warn;
} else if (i == KEXLIST_HOSTKEY) {
/*
* Ignore an unexpected/inappropriate offer of "null",
* we offer "null" when we're willing to use GSS KEX,
* but it is only acceptable when GSSKEX is actually
* selected.
*/
if (alg->u.hk.hostkey == NULL &&
s->kex_alg->main_type != KEXTYPE_GSS)
continue;
s->hostkey_alg = alg->u.hk.hostkey;
s->warn_hk = alg->u.hk.warn;
} else if (i == KEXLIST_CSCIPHER) {
s->out.cipher = alg->u.cipher.cipher;
s->warn_cscipher = alg->u.cipher.warn;
} else if (i == KEXLIST_SCCIPHER) {
s->in.cipher = alg->u.cipher.cipher;
s->warn_sccipher = alg->u.cipher.warn;
} else if (i == KEXLIST_CSMAC) {
s->out.mac = alg->u.mac.mac;
s->out.etm_mode = alg->u.mac.etm;
} else if (i == KEXLIST_SCMAC) {
s->in.mac = alg->u.mac.mac;
s->in.etm_mode = alg->u.mac.etm;
} else if (i == KEXLIST_CSCOMP) {
s->out.comp = alg->u.comp.comp;
s->out.comp_delayed = alg->u.comp.delayed;
} else if (i == KEXLIST_SCCOMP) {
s->in.comp = alg->u.comp.comp;
s->in.comp_delayed = alg->u.comp.delayed;
}
goto matched;
}
}
ssh_sw_abort(s->ppl.ssh, "Couldn't agree a %s (available: %.*s)",
kexlist_descr[i], PTRLEN_PRINTF(str));
return; return;
matched:; }
}
if (i == KEXLIST_HOSTKEY && if (s->warn_hk) {
!s->gss_kex_used && int j, k;
s->kex_alg->main_type != KEXTYPE_GSS) { char *betteralgs;
int j;
/* /*
* In addition to deciding which host key we're * Change warning box wording depending on why we chose a
* actually going to use, we should make a list of the * warning-level host key algorithm. If it's because
* host keys offered by the server which we _don't_ * that's all we have *cached*, list the host keys we
* have cached. These will be offered as cross- * could usefully cross-certify. Otherwise, use the same
* certification options by ssh_get_specials. * standard wording as any other weak crypto primitive.
* */
* We also count the key we're currently using for KEX betteralgs = NULL;
* as one we've already got, because by the time this for (j = 0; j < s->n_uncert_hostkeys; j++) {
* menu becomes visible, it will be. const struct ssh_signkey_with_user_pref_id *hktype =
*/ &hostkey_algs[s->uncert_hostkeys[j]];
s->n_uncert_hostkeys = 0; int better = FALSE;
for (k = 0; k < HK_MAX; k++) {
for (j = 0; j < lenof(hostkey_algs); j++) { int id = conf_get_int_int(s->conf, CONF_ssh_hklist, k);
if (hostkey_algs[j].alg != s->hostkey_alg && if (id == HK_WARN) {
in_commasep_string(hostkey_algs[j].alg->ssh_id, break;
str.ptr, str.len) && } else if (id == hktype->id) {
!have_ssh_host_key(s->savedhost, s->savedport, better = TRUE;
hostkey_algs[j].alg->cache_id)) { break;
s->uncert_hostkeys[s->n_uncert_hostkeys++] = j; }
} }
if (better) {
if (betteralgs) {
char *old_ba = betteralgs;
betteralgs = dupcat(betteralgs, ",",
hktype->alg->ssh_id,
(const char *)NULL);
sfree(old_ba);
} else {
betteralgs = dupstr(hktype->alg->ssh_id);
} }
} }
} }
if (betteralgs) {
get_string(pktin); /* client->server language */
get_string(pktin); /* server->client language */
s->ignorepkt = get_bool(pktin) && !s->guessok;
s->exhash = ssh_hash_new(s->kex_alg->hash);
put_stringz(s->exhash, s->client_greeting);
put_stringz(s->exhash, s->server_greeting);
put_string(s->exhash, s->client_kexinit->u, s->client_kexinit->len);
put_string(s->exhash, s->server_kexinit->u, s->server_kexinit->len);
if (s->warn_kex) {
s->dlgret = seat_confirm_weak_crypto_primitive(
s->ppl.seat, "key-exchange algorithm", s->kex_alg->name,
ssh2_transport_dialog_callback, s);
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at kex warning");
return;
}
}
if (s->warn_hk) {
int j, k;
char *betteralgs;
/*
* Change warning box wording depending on why we chose a
* warning-level host key algorithm. If it's because
* that's all we have *cached*, list the host keys we
* could usefully cross-certify. Otherwise, use the same
* standard wording as any other weak crypto primitive.
*/
betteralgs = NULL;
for (j = 0; j < s->n_uncert_hostkeys; j++) {
const struct ssh_signkey_with_user_pref_id *hktype =
&hostkey_algs[s->uncert_hostkeys[j]];
int better = FALSE;
for (k = 0; k < HK_MAX; k++) {
int id = conf_get_int_int(s->conf, CONF_ssh_hklist, k);
if (id == HK_WARN) {
break;
} else if (id == hktype->id) {
better = TRUE;
break;
}
}
if (better) {
if (betteralgs) {
char *old_ba = betteralgs;
betteralgs = dupcat(betteralgs, ",",
hktype->alg->ssh_id,
(const char *)NULL);
sfree(old_ba);
} else {
betteralgs = dupstr(hktype->alg->ssh_id);
}
}
}
if (betteralgs) {
/* Use the special warning prompt that lets us provide /* Use the special warning prompt that lets us provide
* a list of better algorithms */ * a list of better algorithms */
s->dlgret = seat_confirm_weak_cached_hostkey( s->dlgret = seat_confirm_weak_cached_hostkey(
s->ppl.seat, s->hostkey_alg->ssh_id, betteralgs, s->ppl.seat, s->hostkey_alg->ssh_id, betteralgs,
ssh2_transport_dialog_callback, s); ssh2_transport_dialog_callback, s);
sfree(betteralgs); sfree(betteralgs);
} else { } else {
/* If none exist, use the more general 'weak crypto' /* If none exist, use the more general 'weak crypto'
* warning prompt */ * warning prompt */
s->dlgret = seat_confirm_weak_crypto_primitive( s->dlgret = seat_confirm_weak_crypto_primitive(
s->ppl.seat, "host key type", s->hostkey_alg->ssh_id, s->ppl.seat, "host key type", s->hostkey_alg->ssh_id,
ssh2_transport_dialog_callback, s); ssh2_transport_dialog_callback, s);
}
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at host key warning");
return;
}
} }
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->warn_cscipher) { if (s->dlgret == 0) {
s->dlgret = seat_confirm_weak_crypto_primitive( ssh_user_close(s->ppl.ssh, "User aborted at host key warning");
s->ppl.seat, "client-to-server cipher", s->out.cipher->name, return;
ssh2_transport_dialog_callback, s);
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
return;
}
} }
if (s->warn_sccipher) {
s->dlgret = seat_confirm_weak_crypto_primitive(
s->ppl.seat, "server-to-client cipher", s->in.cipher->name,
ssh2_transport_dialog_callback, s);
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
return;
}
}
if (s->ignorepkt) /* first_kex_packet_follows */
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
} }
if (s->warn_cscipher) {
s->dlgret = seat_confirm_weak_crypto_primitive(
s->ppl.seat, "client-to-server cipher", s->out.cipher->name,
ssh2_transport_dialog_callback, s);
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
return;
}
}
if (s->warn_sccipher) {
s->dlgret = seat_confirm_weak_crypto_primitive(
s->ppl.seat, "server-to-client cipher", s->in.cipher->name,
ssh2_transport_dialog_callback, s);
crMaybeWaitUntilV(s->dlgret >= 0);
if (s->dlgret == 0) {
ssh_user_close(s->ppl.ssh, "User aborted at cipher warning");
return;
}
}
/*
* If the other side has sent an initial key exchange packet that
* we must treat as a wrong guess, wait for it, and discard it.
*/
if (s->ignorepkt)
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
if (s->kex_alg->main_type == KEXTYPE_DH) { if (s->kex_alg->main_type == KEXTYPE_DH) {
/* /*
* Work out the number of bits of key we will need from the * Work out the number of bits of key we will need from the

View File

@ -596,6 +596,38 @@ void add_to_commasep(strbuf *buf, const char *data)
put_data(buf, data, strlen(data)); put_data(buf, data, strlen(data));
} }
int get_commasep_word(ptrlen *list, ptrlen *word)
{
const char *comma;
/*
* Discard empty list elements, should there be any, because we
* never want to return one as if it was a real string. (This
* introduces a mild tolerance of badly formatted data in lists we
* receive, but I think that's acceptable.)
*/
while (list->len > 0 && *(const char *)list->ptr == ',') {
list->ptr = (const char *)list->ptr + 1;
list->len--;
}
if (!list->len)
return FALSE;
comma = memchr(list->ptr, ',', list->len);
if (!comma) {
*word = *list;
list->len = 0;
} else {
size_t wordlen = comma - (const char *)list->ptr;
word->ptr = list->ptr;
word->len = wordlen;
list->ptr = (const char *)list->ptr + wordlen + 1;
list->len -= wordlen + 1;
}
return TRUE;
}
/* ---------------------------------------------------------------------- /* ----------------------------------------------------------------------
* Functions for translating SSH packet type codes into their symbolic * Functions for translating SSH packet type codes into their symbolic
* string names. * string names.