mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-07-02 20:12:48 -05:00
Move init_primes_array out into its own file.
Mostly because I just had a neat idea about how to expose that large mutable array without it being a mutable global variable: make it a static in its own module, and expose only a _pointer_ to it, which is const-qualified. While I'm there, changed the name to something more descriptive.
This commit is contained in:
44
sshprime.c
44
sshprime.c
@ -5,6 +5,7 @@
|
||||
#include <assert.h>
|
||||
#include "ssh.h"
|
||||
#include "mpint.h"
|
||||
#include "sshkeygen.h"
|
||||
|
||||
/*
|
||||
* This prime generation algorithm is pretty much cribbed from
|
||||
@ -107,34 +108,6 @@
|
||||
* but 1s.)
|
||||
*/
|
||||
|
||||
static unsigned short primes[6542]; /* # primes < 65536 */
|
||||
#define NPRIMES (lenof(primes))
|
||||
|
||||
static void init_primes_array(void)
|
||||
{
|
||||
if (primes[0])
|
||||
return; /* already done */
|
||||
|
||||
bool A[65536];
|
||||
|
||||
for (size_t i = 2; i < lenof(A); i++)
|
||||
A[i] = true;
|
||||
|
||||
for (size_t i = 2; i < lenof(A); i++) {
|
||||
if (!A[i])
|
||||
continue;
|
||||
for (size_t j = 2*i; j < lenof(A); j += i)
|
||||
A[j] = false;
|
||||
}
|
||||
|
||||
size_t pos = 0;
|
||||
for (size_t i = 2; i < lenof(A); i++)
|
||||
if (A[i])
|
||||
primes[pos++] = i;
|
||||
|
||||
assert(pos == NPRIMES);
|
||||
}
|
||||
|
||||
static unsigned short mp_mod_short(mp_int *x, unsigned short modulus)
|
||||
{
|
||||
/*
|
||||
@ -176,7 +149,7 @@ mp_int *primegen(
|
||||
int bits, int modulus, int residue, mp_int *factor,
|
||||
int phase, progfn_t pfn, void *pfnparam, unsigned firstbits)
|
||||
{
|
||||
init_primes_array();
|
||||
init_smallprimes();
|
||||
|
||||
int progress = 0;
|
||||
|
||||
@ -220,16 +193,16 @@ mp_int *primegen(
|
||||
*/
|
||||
|
||||
/* List the moduli */
|
||||
unsigned long moduli[NPRIMES + 1];
|
||||
for (size_t i = 0; i < NPRIMES; i++)
|
||||
moduli[i] = primes[i];
|
||||
moduli[NPRIMES] = modulus;
|
||||
unsigned long moduli[NSMALLPRIMES + 1];
|
||||
for (size_t i = 0; i < NSMALLPRIMES; i++)
|
||||
moduli[i] = smallprimes[i];
|
||||
moduli[NSMALLPRIMES] = modulus;
|
||||
|
||||
/* Find the residue of our starting number mod each of them. Also
|
||||
* set up the multipliers array which tells us how each one will
|
||||
* change when we increment the number (which isn't just 1 if
|
||||
* we're incrementing by multiples of factor). */
|
||||
unsigned long residues[NPRIMES + 1], multipliers[NPRIMES + 1];
|
||||
unsigned long residues[NSMALLPRIMES + 1], multipliers[NSMALLPRIMES + 1];
|
||||
for (size_t i = 0; i < lenof(moduli); i++) {
|
||||
residues[i] = mp_mod_short(p, moduli[i]);
|
||||
if (factor)
|
||||
@ -239,7 +212,8 @@ mp_int *primegen(
|
||||
}
|
||||
|
||||
/* Adjust the last entry so that it avoids a residue other than zero */
|
||||
residues[NPRIMES] = (residues[NPRIMES] + modulus - residue) % modulus;
|
||||
residues[NSMALLPRIMES] = (residues[NSMALLPRIMES] + modulus
|
||||
- residue) % modulus;
|
||||
|
||||
/*
|
||||
* Now loop until no residue in that list is zero, to find a
|
||||
|
Reference in New Issue
Block a user