diff --git a/testdata/bignum.py b/testdata/bignum.py index 37341e68..05ca4528 100644 --- a/testdata/bignum.py +++ b/testdata/bignum.py @@ -1,14 +1,40 @@ # Generate test cases for a bignum implementation. import sys -import mathlib + +# integer square roots +def sqrt(n): + d = long(n) + a = 0L + # b must start off as a power of 4 at least as large as n + ndigits = len(hex(long(n))) + b = 1L << (ndigits*4) + while 1: + a = a >> 1 + di = 2*a + b + if di <= d: + d = d - di + a = a + b + b = b >> 2 + if b == 0: break + return a + +# continued fraction convergents of a rational +def confrac(n, d): + coeffs = [(1,0),(0,1)] + while d != 0: + i = n / d + n, d = d, n % d + coeffs.append((coeffs[-2][0]-i*coeffs[-1][0], + coeffs[-2][1]-i*coeffs[-1][1])) + return coeffs def findprod(target, dir = +1, ratio=(1,1)): # Return two numbers whose product is as close as we can get to # 'target', with any deviation having the sign of 'dir', and in # the same approximate ratio as 'ratio'. - r = mathlib.sqrt(target * ratio[0] * ratio[1]) + r = sqrt(target * ratio[0] * ratio[1]) a = r / ratio[1] b = r / ratio[0] if a*b * dir < target * dir: @@ -22,11 +48,7 @@ def findprod(target, dir = +1, ratio=(1,1)): improved = 0 a, b = best[:2] - terms = mathlib.confracr(a, b, output=None) - coeffs = [(1,0),(0,1)] - for t in terms: - coeffs.append((coeffs[-2][0]-t*coeffs[-1][0], - coeffs[-2][1]-t*coeffs[-1][1])) + coeffs = confrac(a, b) for c in coeffs: # a*c[0]+b*c[1] is as close as we can get it to zero. So # if we replace a and b with a+c[1] and b+c[0], then that @@ -45,7 +67,7 @@ def findprod(target, dir = +1, ratio=(1,1)): A,B,C = da*db, b*da+a*db, a*b-target discrim = B^2-4*A*C if discrim > 0 and A != 0: - root = mathlib.sqrt(discrim) + root = sqrt(discrim) vals = [] vals.append((-B + root) / (2*A)) vals.append((-B - root) / (2*A)) @@ -83,9 +105,9 @@ for i in range(1,4200): # Simple tests of modpow. for i in range(64, 4097, 63): - modulus = mathlib.sqrt(1<<(2*i-1)) | 1 - base = mathlib.sqrt(3*modulus*modulus) % modulus - expt = mathlib.sqrt(modulus*modulus*2/5) + modulus = sqrt(1<<(2*i-1)) | 1 + base = sqrt(3*modulus*modulus) % modulus + expt = sqrt(modulus*modulus*2/5) print "pow", hexstr(base), hexstr(expt), hexstr(modulus), hexstr(pow(base, expt, modulus)) if i <= 1024: # Test even moduli, which can't be done by Montgomery.