1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 01:02:24 +00:00

Hardware-accelerated SHA-512 on the Arm architecture.

The NEON support for SHA-512 acceleration looks very like SHA-256,
with a pair of chained instructions to generate a 128-bit vector
register full of message schedule, and another pair to update the hash
state based on those. But since SHA-512 is twice as big in all
dimensions, those four instructions between them only account for two
rounds of it, in place of four rounds of SHA-256.

Also, it's a tighter squeeze to fit all the data needed by those
instructions into their limited number of register operands. The NEON
SHA-256 implementation was able to keep its hash state and message
schedule stored as 128-bit vectors and then pass combinations of those
vectors directly to the instructions that did the work; for SHA-512,
in several places you have to make one of the input operands to the
main instruction by combining two halves of different vectors from
your existing state. But that operation is a quick single EXT
instruction, so no trouble.

The only other problem I've found is that clang - in particular the
version on M1 macOS, but as far as I can tell, even on current trunk -
doesn't seem to implement the NEON intrinsics for the SHA-512
extension. So I had to bodge my own versions with inline assembler in
order to get my implementation to compile under clang. Hopefully at
some point in the future the gap might be filled and I can relegate
that to a backwards-compatibility hack!

This commit adds the same kind of switching mechanism for SHA-512 that
we already had for SHA-256, SHA-1 and AES, and as with all of those,
plumbs it through to testcrypt so that you can explicitly ask for the
hardware or software version of SHA-512. So the test suite can run the
standard test vectors against both implementations in turn.

On M1 macOS, I'm testing at run time for the presence of SHA-512 by
checking a sysctl setting. You can perform the same test on the
command line by running "sysctl hw.optional.armv8_2_sha512".

As far as I can tell, on Windows there is not yet any flag to test for
this CPU feature, so for the moment, the new accelerated SHA-512 is
turned off unconditionally on Windows.
This commit is contained in:
Simon Tatham 2020-12-24 11:40:15 +00:00
parent c6d921add5
commit a9763ce4ed
8 changed files with 659 additions and 75 deletions

View File

@ -171,7 +171,7 @@ AC_CHECK_LIB(X11, XOpenDisplay,
AC_CHECK_FUNCS([getaddrinfo posix_openpt ptsname setresuid strsignal updwtmpx fstatat dirfd futimes setpwent endpwent getauxval elf_aux_info]) AC_CHECK_FUNCS([getaddrinfo posix_openpt ptsname setresuid strsignal updwtmpx fstatat dirfd futimes setpwent endpwent getauxval elf_aux_info])
AC_CHECK_DECLS([CLOCK_MONOTONIC], [], [], [[#include <time.h>]]) AC_CHECK_DECLS([CLOCK_MONOTONIC], [], [], [[#include <time.h>]])
AC_CHECK_HEADERS([sys/auxv.h asm/hwcap.h sys/types.h glob.h]) AC_CHECK_HEADERS([sys/auxv.h asm/hwcap.h sys/sysctl.h sys/types.h glob.h])
AC_SEARCH_LIBS([clock_gettime], [rt], [AC_DEFINE([HAVE_CLOCK_GETTIME],[],[Define if clock_gettime() is available])]) AC_SEARCH_LIBS([clock_gettime], [rt], [AC_DEFINE([HAVE_CLOCK_GETTIME],[],[Define if clock_gettime() is available])])
AC_CACHE_CHECK([for SO_PEERCRED and dependencies], [x_cv_linux_so_peercred], [ AC_CACHE_CHECK([for SO_PEERCRED and dependencies], [x_cv_linux_so_peercred], [

5
ssh.h
View File

@ -976,7 +976,11 @@ extern const ssh_hashalg ssh_sha256;
extern const ssh_hashalg ssh_sha256_hw; extern const ssh_hashalg ssh_sha256_hw;
extern const ssh_hashalg ssh_sha256_sw; extern const ssh_hashalg ssh_sha256_sw;
extern const ssh_hashalg ssh_sha384; extern const ssh_hashalg ssh_sha384;
extern const ssh_hashalg ssh_sha384_hw;
extern const ssh_hashalg ssh_sha384_sw;
extern const ssh_hashalg ssh_sha512; extern const ssh_hashalg ssh_sha512;
extern const ssh_hashalg ssh_sha512_hw;
extern const ssh_hashalg ssh_sha512_sw;
extern const ssh_hashalg ssh_sha3_224; extern const ssh_hashalg ssh_sha3_224;
extern const ssh_hashalg ssh_sha3_256; extern const ssh_hashalg ssh_sha3_256;
extern const ssh_hashalg ssh_sha3_384; extern const ssh_hashalg ssh_sha3_384;
@ -1020,6 +1024,7 @@ extern const ssh_compression_alg ssh_zlib;
bool platform_aes_hw_available(void); bool platform_aes_hw_available(void);
bool platform_sha256_hw_available(void); bool platform_sha256_hw_available(void);
bool platform_sha1_hw_available(void); bool platform_sha1_hw_available(void);
bool platform_sha512_hw_available(void);
/* /*
* PuTTY version number formatted as an SSH version string. * PuTTY version number formatted as an SSH version string.

View File

@ -9,6 +9,100 @@
#include <assert.h> #include <assert.h>
#include "ssh.h" #include "ssh.h"
/*
* Start by deciding whether we can support hardware SHA at all.
*/
#define HW_SHA512_NONE 0
#define HW_SHA512_NEON 1
#ifdef _FORCE_SHA512_NEON
# define HW_SHA512 HW_SHA512_NEON
#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* Arm can potentially support both endiannesses, but this code
* hasn't been tested on anything but little. If anyone wants to
* run big-endian, they'll need to fix it first. */
#elif defined __ARM_FEATURE_SHA512
/* If the Arm SHA-512 extension is available already, we can
* support NEON SHA without having to enable anything by hand */
# define HW_SHA512 HW_SHA512_NEON
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<arm_neon.h>) && \
(defined(__aarch64__))
/* clang can enable the crypto extension in AArch64 using
* __attribute__((target)) */
# define HW_SHA512 HW_SHA512_NEON
# define USE_CLANG_ATTR_TARGET_AARCH64
# endif
#endif
#if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA512
# undef HW_SHA512
# define HW_SHA512 HW_SHA512_NONE
#endif
/*
* The actual query function that asks if hardware acceleration is
* available.
*/
static bool sha512_hw_available(void);
/*
* The top-level selection function, caching the results of
* sha512_hw_available() so it only has to run once.
*/
static bool sha512_hw_available_cached(void)
{
static bool initialised = false;
static bool hw_available;
if (!initialised) {
hw_available = sha512_hw_available();
initialised = true;
}
return hw_available;
}
struct sha512_select_options {
const ssh_hashalg *hw, *sw;
};
static ssh_hash *sha512_select(const ssh_hashalg *alg)
{
const struct sha512_select_options *options =
(const struct sha512_select_options *)alg->extra;
const ssh_hashalg *real_alg =
sha512_hw_available_cached() ? options->hw : options->sw;
return ssh_hash_new(real_alg);
}
const struct sha512_select_options ssh_sha512_select_options = {
&ssh_sha512_hw, &ssh_sha512_sw,
};
const struct sha512_select_options ssh_sha384_select_options = {
&ssh_sha384_hw, &ssh_sha384_sw,
};
const ssh_hashalg ssh_sha512 = {
.new = sha512_select,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "dummy selector vtable"),
.extra = &ssh_sha512_select_options,
};
const ssh_hashalg ssh_sha384 = {
.new = sha512_select,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "dummy selector vtable"),
.extra = &ssh_sha384_select_options,
};
/* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
static const uint64_t sha512_initial_state[] = { static const uint64_t sha512_initial_state[] = {
0x6a09e667f3bcc908ULL, 0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL, 0xbb67ae8584caa73bULL,
@ -128,6 +222,10 @@ static inline void sha512_block_pad(sha512_block *blk, BinarySink *bs)
assert(blk->used == 0 && "Should have exactly hit a block boundary"); assert(blk->used == 0 && "Should have exactly hit a block boundary");
} }
/* ----------------------------------------------------------------------
* Software implementation of SHA-512.
*/
static inline uint64_t ror(uint64_t x, unsigned y) static inline uint64_t ror(uint64_t x, unsigned y)
{ {
return (x << (63 & -y)) | (x >> (63 & y)); return (x << (63 & -y)) | (x >> (63 & y));
@ -275,7 +373,7 @@ static void sha512_sw_digest(ssh_hash *hash, uint8_t *digest)
PUT_64BIT_MSB_FIRST(digest + 8*i, s->core[i]); PUT_64BIT_MSB_FIRST(digest + 8*i, s->core[i]);
} }
const ssh_hashalg ssh_sha512 = { const ssh_hashalg ssh_sha512_sw = {
.new = sha512_sw_new, .new = sha512_sw_new,
.reset = sha512_sw_reset, .reset = sha512_sw_reset,
.copyfrom = sha512_sw_copyfrom, .copyfrom = sha512_sw_copyfrom,
@ -287,7 +385,7 @@ const ssh_hashalg ssh_sha512 = {
.extra = sha512_initial_state, .extra = sha512_initial_state,
}; };
const ssh_hashalg ssh_sha384 = { const ssh_hashalg ssh_sha384_sw = {
.new = sha512_sw_new, .new = sha512_sw_new,
.reset = sha512_sw_reset, .reset = sha512_sw_reset,
.copyfrom = sha512_sw_copyfrom, .copyfrom = sha512_sw_copyfrom,
@ -298,3 +396,430 @@ const ssh_hashalg ssh_sha384 = {
HASHALG_NAMES_ANNOTATED("SHA-384", "unaccelerated"), HASHALG_NAMES_ANNOTATED("SHA-384", "unaccelerated"),
.extra = sha384_initial_state, .extra = sha384_initial_state,
}; };
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-512 using Arm NEON.
*/
#if HW_SHA512 == HW_SHA512_NEON
/*
* Manually set the target architecture, if we decided above that we
* need to.
*/
#ifdef USE_CLANG_ATTR_TARGET_AARCH64
/*
* A spot of cheating: redefine some ACLE feature macros before
* including arm_neon.h. Otherwise we won't get the SHA intrinsics
* defined by that header, because it will be looking at the settings
* for the whole translation unit rather than the ones we're going to
* put on some particular functions using __attribute__((target)).
*/
#define __ARM_NEON 1
#define __ARM_FEATURE_CRYPTO 1
#define FUNC_ISA __attribute__ ((target("neon,sha3")))
#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */
#ifndef FUNC_ISA
#define FUNC_ISA
#endif
#ifdef USE_ARM64_NEON_H
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
static bool sha512_hw_available(void)
{
/*
* For Arm, we delegate to a per-platform detection function (see
* explanation in sshaes.c).
*/
return platform_sha512_hw_available();
}
#if defined __clang__
/*
* As of 2020-12-24, I've found that clang doesn't provide the SHA-512
* NEON intrinsics. So I define my own set using inline assembler, and
* use #define to effectively rename them over the top of the standard
* names.
*
* The aim of that #define technique is that it should avoid a build
* failure if these intrinsics _are_ defined in <arm_neon.h>.
* Obviously it would be better in that situation to switch back to
* using the real intrinsics, but until I see a version of clang that
* supports them, I won't know what version number to test in the
* ifdef.
*/
static inline FUNC_ISA
uint64x2_t vsha512su0q_u64_asm(uint64x2_t x, uint64x2_t y) {
__asm__("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512su1q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512hq_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
static inline FUNC_ISA
uint64x2_t vsha512h2q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) {
__asm__("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
return x;
}
#undef vsha512su0q_u64
#define vsha512su0q_u64 vsha512su0q_u64_asm
#undef vsha512su1q_u64
#define vsha512su1q_u64 vsha512su1q_u64_asm
#undef vsha512hq_u64
#define vsha512hq_u64 vsha512hq_u64_asm
#undef vsha512h2q_u64
#define vsha512h2q_u64 vsha512h2q_u64_asm
#endif /* defined __clang__ */
typedef struct sha512_neon_core sha512_neon_core;
struct sha512_neon_core {
uint64x2_t ab, cd, ef, gh;
};
FUNC_ISA
static inline uint64x2_t sha512_neon_load_input(const uint8_t *p)
{
return vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(p)));
}
FUNC_ISA
static inline uint64x2_t sha512_neon_schedule_update(
uint64x2_t m8, uint64x2_t m7, uint64x2_t m4, uint64x2_t m3, uint64x2_t m1)
{
/*
* vsha512su0q_u64() takes words from a long way back in the
* schedule and performs the sigma_0 half of the computation of
* the next two 64-bit message-schedule words.
*
* vsha512su1q_u64() combines the result of that with the sigma_1
* steps, to output the finished version of those two words. The
* total amount of input data it requires fits nicely into three
* 128-bit vector registers, but one of those registers is
* misaligned compared to the 128-bit chunks that the message
* schedule is stored in. So we use vextq_u64 to make one of its
* input words out of the second half of m4 and the first half of
* m3.
*/
return vsha512su1q_u64(vsha512su0q_u64(m8, m7), m1, vextq_u64(m4, m3, 1));
}
FUNC_ISA
static inline void sha512_neon_round2(
unsigned round_index, uint64x2_t schedule_words,
uint64x2_t *ab, uint64x2_t *cd, uint64x2_t *ef, uint64x2_t *gh)
{
/*
* vsha512hq_u64 performs the Sigma_1 and Ch half of the
* computation of two rounds of SHA-512 (including feeding back
* one of the outputs from the first of those half-rounds into the
* second one).
*
* vsha512h2q_u64 combines the result of that with the Sigma_0 and
* Maj steps, and outputs one 128-bit vector that replaces the gh
* piece of the input hash state, and a second that updates cd by
* addition.
*
* Similarly to vsha512su1q_u64 above, some of the input registers
* expected by these instructions are misaligned by 64 bits
* relative to the chunks we've divided the hash state into, so we
* have to start by making 'de' and 'fg' words out of our input
* cd,ef,gh, using vextq_u64.
*
* Also, one of the inputs to vsha512hq_u64 is expected to contain
* the results of summing gh + two round constants + two words of
* message schedule, but the two words of the message schedule
* have to be the opposite way round in the vector register from
* the way that vsha512su1q_u64 output them. Hence, there's
* another vextq_u64 in here that swaps the two halves of the
* initial_sum vector register.
*
* (This also means that I don't have to prepare a specially
* reordered version of the sha512_round_constants[] array: as
* long as I'm unavoidably doing a swap at run time _anyway_, I
* can load from the normally ordered version of that array, and
* just take care to fold in that data _before_ the swap rather
* than after.)
*/
/* Load two round constants, with the first one in the low half */
uint64x2_t round_constants = vld1q_u64(
sha512_round_constants + round_index);
/* Add schedule words to round constants */
uint64x2_t initial_sum = vaddq_u64(schedule_words, round_constants);
/* Swap that sum around so the word used in the first of the two
* rounds is in the _high_ half of the vector, matching where h
* lives in the gh vector */
uint64x2_t swapped_initial_sum = vextq_u64(initial_sum, initial_sum, 1);
/* Add gh to that, now that they're matching ways round */
uint64x2_t sum = vaddq_u64(swapped_initial_sum, *gh);
/* Make the misaligned de and fg words */
uint64x2_t de = vextq_u64(*cd, *ef, 1);
uint64x2_t fg = vextq_u64(*ef, *gh, 1);
/* Now we're ready to put all the pieces together. The output from
* vsha512h2q_u64 can be used directly as the new gh, and the
* output from vsha512hq_u64 is simultaneously the intermediate
* value passed to h2 and the thing you have to add on to cd. */
uint64x2_t intermed = vsha512hq_u64(sum, fg, de);
*gh = vsha512h2q_u64(intermed, *cd, *ab);
*cd = vaddq_u64(*cd, intermed);
}
FUNC_ISA
static inline void sha512_neon_block(sha512_neon_core *core, const uint8_t *p)
{
uint64x2_t s0, s1, s2, s3, s4, s5, s6, s7;
uint64x2_t ab = core->ab, cd = core->cd, ef = core->ef, gh = core->gh;
s0 = sha512_neon_load_input(p + 16*0);
sha512_neon_round2(0, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_load_input(p + 16*1);
sha512_neon_round2(2, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_load_input(p + 16*2);
sha512_neon_round2(4, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_load_input(p + 16*3);
sha512_neon_round2(6, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_load_input(p + 16*4);
sha512_neon_round2(8, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_load_input(p + 16*5);
sha512_neon_round2(10, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_load_input(p + 16*6);
sha512_neon_round2(12, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_load_input(p + 16*7);
sha512_neon_round2(14, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(16, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(18, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(20, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(22, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(24, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(26, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(28, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(30, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(32, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(34, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(36, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(38, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(40, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(42, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(44, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(46, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(48, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(50, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(52, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(54, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(56, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(58, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(60, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(62, s7, &cd, &ef, &gh, &ab);
s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7);
sha512_neon_round2(64, s0, &ab, &cd, &ef, &gh);
s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0);
sha512_neon_round2(66, s1, &gh, &ab, &cd, &ef);
s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1);
sha512_neon_round2(68, s2, &ef, &gh, &ab, &cd);
s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2);
sha512_neon_round2(70, s3, &cd, &ef, &gh, &ab);
s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3);
sha512_neon_round2(72, s4, &ab, &cd, &ef, &gh);
s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4);
sha512_neon_round2(74, s5, &gh, &ab, &cd, &ef);
s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5);
sha512_neon_round2(76, s6, &ef, &gh, &ab, &cd);
s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6);
sha512_neon_round2(78, s7, &cd, &ef, &gh, &ab);
core->ab = vaddq_u64(core->ab, ab);
core->cd = vaddq_u64(core->cd, cd);
core->ef = vaddq_u64(core->ef, ef);
core->gh = vaddq_u64(core->gh, gh);
}
typedef struct sha512_neon {
sha512_neon_core core;
sha512_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha512_neon;
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha512_neon_new(const ssh_hashalg *alg)
{
if (!sha512_hw_available_cached())
return NULL;
sha512_neon *s = snew(sha512_neon);
s->hash.vt = alg;
BinarySink_INIT(s, sha512_neon_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static void sha512_neon_reset(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
const uint64_t *iv = (const uint64_t *)hash->vt->extra;
s->core.ab = vld1q_u64(iv);
s->core.cd = vld1q_u64(iv+2);
s->core.ef = vld1q_u64(iv+4);
s->core.gh = vld1q_u64(iv+6);
sha512_block_setup(&s->blk);
}
static void sha512_neon_copyfrom(ssh_hash *hcopy, ssh_hash *horig)
{
sha512_neon *copy = container_of(hcopy, sha512_neon, hash);
sha512_neon *orig = container_of(horig, sha512_neon, hash);
*copy = *orig; /* structure copy */
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
}
static void sha512_neon_free(ssh_hash *hash)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len)
{
sha512_neon *s = BinarySink_DOWNCAST(bs, sha512_neon);
while (len > 0)
if (sha512_block_write(&s->blk, &vp, &len))
sha512_neon_block(&s->core, s->blk.block);
}
static void sha512_neon_digest(ssh_hash *hash, uint8_t *digest)
{
sha512_neon *s = container_of(hash, sha512_neon, hash);
sha512_block_pad(&s->blk, BinarySink_UPCAST(s));
vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab)));
vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd)));
vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef)));
vst1q_u8(digest+48, vrev64q_u8(vreinterpretq_u8_u64(s->core.gh)));
}
const ssh_hashalg ssh_sha512_hw = {
.new = sha512_neon_new,
.reset = sha512_neon_reset,
.copyfrom = sha512_neon_copyfrom,
.digest = sha512_neon_digest,
.free = sha512_neon_free,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "NEON accelerated"),
.extra = sha512_initial_state,
};
const ssh_hashalg ssh_sha384_hw = {
.new = sha512_neon_new,
.reset = sha512_neon_reset,
.copyfrom = sha512_neon_copyfrom,
.digest = sha512_neon_digest,
.free = sha512_neon_free,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "NEON accelerated"),
.extra = sha384_initial_state,
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-512. In this
* case, sha512_hw_new returns NULL (though it should also never be
* selected by sha512_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA512 == HW_SHA512_NONE
static bool sha512_hw_available(void)
{
return false;
}
static ssh_hash *sha512_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static void sha512_stub_reset(ssh_hash *hash) STUB_BODY
static void sha512_stub_copyfrom(ssh_hash *hash, ssh_hash *orig) STUB_BODY
static void sha512_stub_free(ssh_hash *hash) STUB_BODY
static void sha512_stub_digest(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha512_hw = {
.new = sha512_stub_new,
.reset = sha512_stub_reset,
.copyfrom = sha512_stub_copyfrom,
.digest = sha512_stub_digest,
.free = sha512_stub_free,
.hlen = 64,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-512", "!NONEXISTENT ACCELERATED VERSION!"),
};
const ssh_hashalg ssh_sha384_hw = {
.new = sha512_stub_new,
.reset = sha512_stub_reset,
.copyfrom = sha512_stub_copyfrom,
.digest = sha512_stub_digest,
.free = sha512_stub_free,
.hlen = 48,
.blocklen = 128,
HASHALG_NAMES_ANNOTATED("SHA-384", "!NONEXISTENT ACCELERATED VERSION!"),
};
#endif /* HW_SHA512 */

View File

@ -2289,6 +2289,10 @@ class standard_test_vectors(MyTestBase):
"8ad3361763f7e9b2d95f4f0da6e1ccbc")) "8ad3361763f7e9b2d95f4f0da6e1ccbc"))
def testSHA384(self): def testSHA384(self):
for hashname in ['sha384_sw', 'sha384_hw']:
if ssh_hash_new(hashname) is None:
continue # skip testing of unavailable HW implementation
# Test cases from RFC 6234 section 8.5, omitting the ones # Test cases from RFC 6234 section 8.5, omitting the ones
# whose input is not a multiple of 8 bits # whose input is not a multiple of 8 bits
self.assertEqualBin(hash_str('sha384', "abc"), unhex( self.assertEqualBin(hash_str('sha384', "abc"), unhex(
@ -2296,8 +2300,8 @@ class standard_test_vectors(MyTestBase):
'1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7')) '1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7'))
self.assertEqualBin(hash_str('sha384', self.assertEqualBin(hash_str('sha384',
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex( "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
'09330c33f71147e83d192fc782cd1b4753111b173b3b05d2' unhex('09330c33f71147e83d192fc782cd1b4753111b173b3b05d2'
'2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039')) '2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039'))
self.assertEqualBin(hash_str_iter('sha384', self.assertEqualBin(hash_str_iter('sha384',
("a" * 1000 for _ in range(1000))), unhex( ("a" * 1000 for _ in range(1000))), unhex(
@ -2315,54 +2319,65 @@ class standard_test_vectors(MyTestBase):
'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591' 'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591'
'3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7')) '3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7'))
self.assertEqualBin(hash_str('sha384', unhex( self.assertEqualBin(hash_str('sha384', unhex(
"399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621db0f" "399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621"
"3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202fc3f5042" "db0f3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202"
"e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d52865f25cc22b5e8" "fc3f5042e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d5286"
"7784a12fc961d66cb6e89573199a2ce6565cbdf13dca403832cfcb0e8b7211e8" "5f25cc22b5e87784a12fc961d66cb6e89573199a2ce6565cbdf13dca4038"
"3af32a11ac17929ff1c073a51cc027aaedeff85aad7c2b7c5a803e2404d96d2a" "32cfcb0e8b7211e83af32a11ac17929ff1c073a51cc027aaedeff85aad7c"
"77357bda1a6daeed17151cb9bc5125a422e941de0ca0fc5011c23ecffefdd096" "2b7c5a803e2404d96d2a77357bda1a6daeed17151cb9bc5125a422e941de"
"76711cf3db0a3440720e1615c1f22fbc3c721de521e1b99ba1bd557740864214" "0ca0fc5011c23ecffefdd09676711cf3db0a3440720e1615c1f22fbc3c72"
"7ed096")), unhex( "1de521e1b99ba1bd5577408642147ed096")), unhex(
'4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf' '4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf'
'38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0')) '38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0'))
def testSHA512(self): def testSHA512(self):
for hashname in ['sha512_sw', 'sha512_hw']:
if ssh_hash_new(hashname) is None:
continue # skip testing of unavailable HW implementation
# Test cases from RFC 6234 section 8.5, omitting the ones # Test cases from RFC 6234 section 8.5, omitting the ones
# whose input is not a multiple of 8 bits # whose input is not a multiple of 8 bits
self.assertEqualBin(hash_str('sha512', "abc"), unhex( self.assertEqualBin(hash_str('sha512', "abc"), unhex(
'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a' 'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55'
'2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f')) 'd39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94f'
'a54ca49f'))
self.assertEqualBin(hash_str('sha512', self.assertEqualBin(hash_str('sha512',
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex( "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
'8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018' unhex('8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299'
'501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909')) 'aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26'
'545e96e55b874be909'))
self.assertEqualBin(hash_str_iter('sha512', self.assertEqualBin(hash_str_iter('sha512',
("a" * 1000 for _ in range(1000))), unhex( ("a" * 1000 for _ in range(1000))), unhex(
'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb' 'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa9'
'de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b')) '73ebde0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217'
'ad8cc09b'))
self.assertEqualBin(hash_str('sha512', self.assertEqualBin(hash_str('sha512',
"01234567012345670123456701234567" * 20), unhex( "01234567012345670123456701234567" * 20), unhex(
'89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2ba814' '89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2b'
'1a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f3fb7bae9')) 'a8141a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f'
'3fb7bae9'))
self.assertEqualBin(hash_str('sha512', b"\xD0"), unhex( self.assertEqualBin(hash_str('sha512', b"\xD0"), unhex(
'9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4aceee' '9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4a'
'e50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4ab3fbba15')) 'ceeee50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4a'
'b3fbba15'))
self.assertEqualBin(hash_str('sha512', self.assertEqualBin(hash_str('sha512',
unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex( unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex(
'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c9828924c3' 'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c98289'
'ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0c95c90f8')) '24c3ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0'
'c95c90f8'))
self.assertEqualBin(hash_str('sha512', unhex( self.assertEqualBin(hash_str('sha512', unhex(
"a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0de1de" "a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0d"
"6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d03e56ff2" "e1de6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d"
"f868002bc3e431edc44df2f0223d4bb3b243586e1a7d924936694fcbbaf88d95" "03e56ff2f868002bc3e431edc44df2f0223d4bb3b243586e1a7d92493669"
"19e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab4981164bbb6dc32f" "4fcbbaf88d9519e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab"
"969087a145b0d9cc9c67c22b763299419cc4128be9a077b3ace634064e6d9928" "4981164bbb6dc32f969087a145b0d9cc9c67c22b763299419cc4128be9a0"
"3513dc06e7515d0d73132e9a0dc6d3b1f8b246f1a98a3fc72941b1e3bb2098e8" "77b3ace634064e6d99283513dc06e7515d0d73132e9a0dc6d3b1f8b246f1"
"bf16f268d64f0b0f4707fe1ea1a1791ba2f3c0c758e5f551863a96c949ad47d7" "a98a3fc72941b1e3bb2098e8bf16f268d64f0b0f4707fe1ea1a1791ba2f3"
"fb40d2")), unhex( "c0c758e5f551863a96c949ad47d7fb40d2")), unhex(
'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d487193' 'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d48'
'77966b957a878e720584779a62825c18da26415e49a7176a894e7510fd1451f5')) '719377966b957a878e720584779a62825c18da26415e49a7176a894e7510'
'fd1451f5'))
def testSHA3(self): def testSHA3(self):
# Source: all the SHA-3 test strings from # Source: all the SHA-3 test strings from

View File

@ -215,7 +215,11 @@ static const ssh_hashalg *get_hashalg(BinarySource *in)
{"sha256_sw", &ssh_sha256_sw}, {"sha256_sw", &ssh_sha256_sw},
{"sha256_hw", &ssh_sha256_hw}, {"sha256_hw", &ssh_sha256_hw},
{"sha384", &ssh_sha384}, {"sha384", &ssh_sha384},
{"sha384_sw", &ssh_sha384_sw},
{"sha384_hw", &ssh_sha384_hw},
{"sha512", &ssh_sha512}, {"sha512", &ssh_sha512},
{"sha512_sw", &ssh_sha512_sw},
{"sha512_hw", &ssh_sha512_hw},
{"sha3_224", &ssh_sha3_224}, {"sha3_224", &ssh_sha3_224},
{"sha3_256", &ssh_sha3_256}, {"sha3_256", &ssh_sha3_256},
{"sha3_384", &ssh_sha3_384}, {"sha3_384", &ssh_sha3_384},

View File

@ -49,4 +49,17 @@ bool platform_sha1_hw_available(void)
#endif #endif
} }
bool platform_sha512_hw_available(void)
{
#if defined HWCAP_SHA512
return getauxval(AT_HWCAP) & HWCAP_SHA512;
#elif defined HWCAP2_SHA512
return getauxval(AT_HWCAP2) & HWCAP2_SHA512;
#elif defined __APPLE__
return test_sysctl_flag("hw.optional.armv8_2_sha512");
#else
return false;
#endif
}
#endif /* defined __arm__ || defined __aarch64__ */ #endif /* defined __arm__ || defined __aarch64__ */

View File

@ -24,6 +24,10 @@
#include <asm/hwcap.h> #include <asm/hwcap.h>
#endif #endif
#ifdef HAVE_SYS_SYSCTL_H
#include <sys/sysctl.h>
#endif
#if defined HAVE_GETAUXVAL #if defined HAVE_GETAUXVAL
/* No code needed: getauxval has just the API we want already */ /* No code needed: getauxval has just the API we want already */
#elif defined HAVE_ELF_AUX_INFO #elif defined HAVE_ELF_AUX_INFO
@ -42,4 +46,14 @@ static inline u_long getauxval(int which) { return 0; }
#endif /* defined __arm__ || defined __aarch64__ */ #endif /* defined __arm__ || defined __aarch64__ */
#if defined __APPLE__
static inline bool test_sysctl_flag(const char *flagname)
{
int value;
size_t size = sizeof(value);
return (sysctlbyname(flagname, &value, &size, NULL, 0) == 0 &&
size == sizeof(value) && value != 0);
}
#endif /* defined __APPLE__ */
#endif /* PUTTY_UXUTILS_H */ #endif /* PUTTY_UXUTILS_H */

View File

@ -266,6 +266,14 @@ bool platform_sha1_hw_available(void)
return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE); return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE);
} }
bool platform_sha512_hw_available(void)
{
/* As of 2020-12-24, as far as I can tell from docs.microsoft.com,
* Windows on Arm does not yet provide a PF_ARM_V8_* flag for the
* SHA-512 architecture extension. */
return false;
}
#endif #endif
bool is_console_handle(HANDLE handle) bool is_console_handle(HANDLE handle)