1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-09 17:38:00 +00:00

Switch to RFC 6979 for DSA nonce generation.

This fixes a vulnerability that compromises NIST P521 ECDSA keys when
they are used with PuTTY's existing DSA nonce generation code. The
vulnerability has been assigned the identifier CVE-2024-31497.

PuTTY has been doing its DSA signing deterministically for literally
as long as it's been doing it at all, because I didn't trust Windows's
entropy generation. Deterministic nonce generation was introduced in
commit d345ebc2a5, as part of the initial version of our DSA
signing routine. At the time, there was no standard for how to do it,
so we had to think up the details of our system ourselves, with some
help from the Cambridge University computer security group.

More than ten years later, RFC 6979 was published, recommending a
similar system for general use, naturally with all the details
different. We didn't switch over to doing it that way, because we had
a scheme in place already, and as far as I could see, the differences
were not security-critical - just the normal sort of variation you
expect when any two people design a protocol component of this kind
independently.

As far as I know, the _structure_ of our scheme is still perfectly
fine, in terms of what data gets hashed, how many times, and how the
hash output is converted into a nonce. But the weak spot is the choice
of hash function: inside our dsa_gen_k() function, we generate 512
bits of random data using SHA-512, and then reduce that to the output
range by modular reduction, regardless of what signature algorithm
we're generating a nonce for.

In the original use case, this introduced a theoretical bias (the
output size is an odd prime, which doesn't evenly divide the space of
2^512 possible inputs to the reduction), but the theory was that since
integer DSA uses a modulus prime only 160 bits long (being based on
SHA-1, at least in the form that SSH uses it), the bias would be too
small to be detectable, let alone exploitable.

Then we reused the same function for NIST-style ECDSA, when it
arrived. This is fine for the P256 curve, and even P384. But in P521,
the order of the base point is _greater_ than 2^512, so when we
generate a 512-bit number and reduce it, the reduction never makes any
difference, and our output nonces are all in the first 2^512 elements
of the range of about 2^521. So this _does_ introduce a significant
bias in the nonces, compared to the ideal of uniformly random
distribution over the whole range. And it's been recently discovered
that a bias of this kind is sufficient to expose private keys, given a
manageably small number of signatures to work from.

(Incidentally, none of this affects Ed25519. The spec for that system
includes its own idea of how you should do deterministic nonce
generation - completely different again, naturally - and we did it
that way rather than our way, so that we could use the existing test
vectors.)

The simplest fix would be to patch our existing nonce generator to use
a longer hash, or concatenate a couple of SHA-512 hashes, or something
similar. But I think a more robust approach is to switch it out
completely for what is now the standard system. The main reason why I
prefer that is that the standard system comes with test vectors, which
adds a lot of confidence that I haven't made some other mistake in
following my own design.

So here's a commit that adds an implementation of RFC 6979, and
removes the old dsa_gen_k() function. Tests are added based on the
RFC's appendix of test vectors (as many as are compatible with the
more limited API of PuTTY's crypto code, e.g. we lack support for the
NIST P192 curve, or for doing integer DSA with many different hash
functions). One existing test changes its expected outputs, namely the
one that has a sample key pair and signature for every key algorithm
we support.
This commit is contained in:
Simon Tatham 2024-04-01 09:18:34 +01:00
parent aab0892671
commit c193fe9848
9 changed files with 691 additions and 131 deletions

View File

@ -30,6 +30,7 @@ add_sources_from_current_dir(crypto
pubkey-pem.c
pubkey-ppk.c
pubkey-ssh1.c
rfc6979.c
rsa.c
sha256-common.c
sha256-select.c

View File

@ -340,117 +340,6 @@ static int dsa_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
return ret;
}
mp_int *dsa_gen_k(const char *id_string, mp_int *modulus,
mp_int *private_key,
unsigned char *digest, int digest_len)
{
/*
* The basic DSA signing algorithm is:
*
* - invent a random k between 1 and q-1 (exclusive).
* - Compute r = (g^k mod p) mod q.
* - Compute s = k^-1 * (hash + x*r) mod q.
*
* This has the dangerous properties that:
*
* - if an attacker in possession of the public key _and_ the
* signature (for example, the host you just authenticated
* to) can guess your k, he can reverse the computation of s
* and work out x = r^-1 * (s*k - hash) mod q. That is, he
* can deduce the private half of your key, and masquerade
* as you for as long as the key is still valid.
*
* - since r is a function purely of k and the public key, if
* the attacker only has a _range of possibilities_ for k
* it's easy for him to work through them all and check each
* one against r; he'll never be unsure of whether he's got
* the right one.
*
* - if you ever sign two different hashes with the same k, it
* will be immediately obvious because the two signatures
* will have the same r, and moreover an attacker in
* possession of both signatures (and the public key of
* course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
* and from there deduce x as before.
*
* - the Bleichenbacher attack on DSA makes use of methods of
* generating k which are significantly non-uniformly
* distributed; in particular, generating a 160-bit random
* number and reducing it mod q is right out.
*
* For this reason we must be pretty careful about how we
* generate our k. Since this code runs on Windows, with no
* particularly good system entropy sources, we can't trust our
* RNG itself to produce properly unpredictable data. Hence, we
* use a totally different scheme instead.
*
* What we do is to take a SHA-512 (_big_) hash of the private
* key x, and then feed this into another SHA-512 hash that
* also includes the message hash being signed. That is:
*
* proto_k = SHA512 ( SHA512(x) || SHA160(message) )
*
* This number is 512 bits long, so reducing it mod q won't be
* noticeably non-uniform. So
*
* k = proto_k mod q
*
* This has the interesting property that it's _deterministic_:
* signing the same hash twice with the same key yields the
* same signature.
*
* Despite this determinism, it's still not predictable to an
* attacker, because in order to repeat the SHA-512
* construction that created it, the attacker would have to
* know the private key value x - and by assumption he doesn't,
* because if he knew that he wouldn't be attacking k!
*
* (This trick doesn't, _per se_, protect against reuse of k.
* Reuse of k is left to chance; all it does is prevent
* _excessively high_ chances of reuse of k due to entropy
* problems.)
*
* Thanks to Colin Plumb for the general idea of using x to
* ensure k is hard to guess, and to the Cambridge University
* Computer Security Group for helping to argue out all the
* fine details.
*/
ssh_hash *h;
unsigned char digest512[64];
/*
* Hash some identifying text plus x.
*/
h = ssh_hash_new(&ssh_sha512);
put_asciz(h, id_string);
put_mp_ssh2(h, private_key);
ssh_hash_digest(h, digest512);
/*
* Now hash that digest plus the message hash.
*/
ssh_hash_reset(h);
put_data(h, digest512, sizeof(digest512));
put_data(h, digest, digest_len);
ssh_hash_final(h, digest512);
/*
* Now convert the result into a bignum, and coerce it to the
* range [2,q), which we do by reducing it mod q-2 and adding 2.
*/
mp_int *modminus2 = mp_copy(modulus);
mp_sub_integer_into(modminus2, modminus2, 2);
mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
mp_int *k = mp_mod(proto_k, modminus2);
mp_free(proto_k);
mp_free(modminus2);
mp_add_integer_into(k, k, 2);
smemclr(digest512, sizeof(digest512));
return k;
}
static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
{
struct dsa_key *dsa = container_of(key, struct dsa_key, sshk);
@ -459,8 +348,9 @@ static void dsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
hash_simple(&ssh_sha1, data, digest);
mp_int *k = dsa_gen_k("DSA deterministic k generator", dsa->q, dsa->x,
digest, sizeof(digest));
/* Generate any valid exponent k, using the RFC 6979 deterministic
* procedure. */
mp_int *k = rfc6979(&ssh_sha1, dsa->q, dsa->x, data);
mp_int *kinv = mp_invert(k, dsa->q); /* k^-1 mod q */
/*

View File

@ -1126,16 +1126,10 @@ static void ecdsa_sign(ssh_key *key, ptrlen data,
mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data);
/* Generate k between 1 and curve->n, using the same deterministic
* k generation system we use for conventional DSA. */
mp_int *k;
{
unsigned char digest[20];
hash_simple(&ssh_sha1, data, digest);
k = dsa_gen_k(
"ECDSA deterministic k generator", ek->curve->w.G_order,
ek->privateKey, digest, sizeof(digest));
}
/* Generate any valid exponent k, using the RFC 6979 deterministic
* procedure. */
mp_int *k = rfc6979(
extra->hash, ek->curve->w.G_order, ek->privateKey, data);
WeierstrassPoint *kG = ecc_weierstrass_multiply(ek->curve->w.G, k);
mp_int *x;

359
crypto/rfc6979.c Normal file
View File

@ -0,0 +1,359 @@
/*
* Code to generate 'nonce' values for DSA signature algorithms, in a
* deterministic way.
*/
#include "ssh.h"
#include "mpint.h"
#include "misc.h"
/*
* All DSA-type signature systems depend on a nonce - a random number
* generated during the signing operation.
*
* This nonce is a weak point of DSA and needs careful protection,
* for multiple reasons:
*
* 1. If an attacker in possession of your public key and a single
* signature can find out or guess the nonce you used in that
* signature, they can immediately recover your _private key_.
*
* 2. If you reuse the same nonce in two different signatures, this
* will be instantly obvious to the attacker (one of the two
* values making up the signature will match), and again, they can
* immediately recover the private key as soon as they notice this.
*
* 3. In at least one system, information about your private key is
* leaked merely by generating nonces with a significant bias.
*
* Attacks #1 and #2 work across all of integer DSA, NIST-style ECDSA,
* and EdDSA. The details vary, but the headline effects are the same.
*
* So we must be very careful with our nonces. They must be generated
* with uniform distribution, but also, they must avoid depending on
* any random number generator that has the slightest doubt about its
* reliability.
*
* In particular, PuTTY's policy is that for this purpose we don't
* _even_ trust the PRNG we use for other cryptography. This is mostly
* a concern because of Windows, where system entropy sources are
* limited and we have doubts about their trustworthiness
* - even CryptGenRandom. PuTTY compensates as best it can with its
* own ongoing entropy collection, and we trust that for session keys,
* but revealing the private key that goes with a long-term public key
* is a far worse outcome than revealing one SSH session key, and for
* keeping your private key safe, we don't think the available Windows
* entropy gives us enough confidence.
*
* A common strategy these days (although <hipster>PuTTY was doing it
* before it was cool</hipster>) is to avoid using a PRNG based on
* system entropy at all. Instead, you use a deterministic PRNG that
* starts from a fixed input seed, and in that input seed you include
* the message to be signed and the _private key_.
*
* Including the private key in the seed is counterintuitive, but does
* actually make sense. A deterministic nonce generation strategy must
* use _some_ piece of input that the attacker doesn't have, or else
* they'd be able to repeat the entire computation and construct the
* same nonce you did. And the one thing they don't know is the
* private key! So we include that in the seed data (under enough
* layers of overcautious hashing to protect it against exposure), and
* then they _can't_ repeat the same construction. Moreover, if they
* _could_, they'd already know the private key, so they wouldn't need
* to perform an attack of this kind at all!
*
* (This trick doesn't, _per se_, protect against reuse of nonces.
* That is left to chance, which is enough, because the space of
* nonces is large enough to make it adequately unlikely. But it
* avoids escalating the reuse risk due to inadequate entropy.)
*
* For integer DSA and ECDSA, the system we use for deterministic
* generation of k is exactly the one specified in RFC 6979. We
* switched to this from the old system that PuTTY used to use before
* that RFC came out. The old system had a critical bug: it did not
* always generate _enough_ data to get uniform distribution, because
* its output was a single SHA-512 hash. We could have fixed that
* minimally, by concatenating multiple hashes, but it seemed more
* sensible to switch to a system that comes with test vectors.
*
* One downside of RFC 6979 is that it's based on rejection sampling
* (that is, you generate a random number and keep retrying until it's
* in range). This makes it play badly with our side-channel test
* system, which wants every execution trace of a supposedly
* constant-time operation to be the same. To work around this
* awkwardness, we break up the algorithm further, into a setup phase
* and an 'attempt to generate an output' phase, each of which is
* individually constant-time.
*/
struct RFC6979 {
/*
* Size of the cyclic group over which we're doing DSA.
* Equivalently, the multiplicative order of g (for integer DSA)
* or the curve's base point (for ECDSA). For integer DSA this is
* also the same thing as the small prime q from the key
* parameters.
*
* This pointer is not owned. Freeing this structure will not free
* it, and freeing the pointed-to integer before freeing this
* structure will make this structure dangerous to use.
*/
mp_int *q;
/*
* The private key integer, which is always the discrete log of
* the public key with respect to the group generator.
*
* This pointer is not owned. Freeing this structure will not free
* it, and freeing the pointed-to integer before freeing this
* structure will make this structure dangerous to use.
*/
mp_int *x;
/*
* Cached values derived from q: its length in bits, and in bytes.
*/
size_t qbits, qbytes;
/*
* Reusable hash and MAC objects.
*/
ssh_hash *hash;
ssh2_mac *mac;
/*
* Cached value: the output length of the hash.
*/
size_t hlen;
/*
* The byte string V used in the algorithm.
*/
unsigned char V[MAX_HASH_LEN];
/*
* The string T to use during each attempt, and how many
* hash-sized blocks to fill it with.
*/
size_t T_nblocks;
unsigned char *T;
};
static mp_int *bits2int(ptrlen b, RFC6979 *s)
{
if (b.len > s->qbytes)
b.len = s->qbytes;
mp_int *x = mp_from_bytes_be(b);
/*
* Rationale for using mp_rshift_fixed_into and not
* mp_rshift_safe_into: the shift count is derived from the
* difference between the length of the modulus q, and the length
* of the input bit string, i.e. between the _sizes_ of things
* involved in the protocol. But the sizes aren't secret. Only the
* actual values of integers and bit strings of those sizes are
* secret. So it's OK for the shift count to be known to an
* attacker - they'd know it anyway just from which DSA algorithm
* we were using.
*/
if (b.len * 8 > s->qbits)
mp_rshift_fixed_into(x, x, b.len * 8 - s->qbits);
return x;
}
static void BinarySink_put_int2octets(BinarySink *bs, mp_int *x, RFC6979 *s)
{
mp_int *x_mod_q = mp_mod(x, s->q);
for (size_t i = s->qbytes; i-- > 0 ;)
put_byte(bs, mp_get_byte(x_mod_q, i));
mp_free(x_mod_q);
}
static void BinarySink_put_bits2octets(BinarySink *bs, ptrlen b, RFC6979 *s)
{
mp_int *x = bits2int(b, s);
BinarySink_put_int2octets(bs, x, s);
mp_free(x);
}
#define put_int2octets(bs, x, s) \
BinarySink_put_int2octets(BinarySink_UPCAST(bs), x, s)
#define put_bits2octets(bs, b, s) \
BinarySink_put_bits2octets(BinarySink_UPCAST(bs), b, s)
RFC6979 *rfc6979_new(const ssh_hashalg *hashalg, mp_int *q, mp_int *x)
{
/* Make the state structure. */
RFC6979 *s = snew(RFC6979);
s->q = q;
s->x = x;
s->qbits = mp_get_nbits(q);
s->qbytes = (s->qbits + 7) >> 3;
s->hash = ssh_hash_new(hashalg);
s->mac = hmac_new_from_hash(hashalg);
s->hlen = hashalg->hlen;
/* In each attempt, we concatenate enough hash blocks to be
* greater than qbits in size. */
size_t hbits = 8 * s->hlen;
s->T_nblocks = (s->qbits + hbits - 1) / hbits;
s->T = snewn(s->T_nblocks * s->hlen, unsigned char);
return s;
}
void rfc6979_setup(RFC6979 *s, ptrlen message)
{
unsigned char h1[MAX_HASH_LEN];
unsigned char K[MAX_HASH_LEN];
/* 3.2 (a): hash the message to get h1. */
ssh_hash_reset(s->hash);
put_datapl(s->hash, message);
ssh_hash_digest(s->hash, h1);
/* 3.2 (b): set V to a sequence of 0x01 bytes the same size as the
* hash function's output. */
memset(s->V, 1, s->hlen);
/* 3.2 (c): set the initial HMAC key K to all zeroes, again the
* same size as the hash function's output. */
memset(K, 0, s->hlen);
ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
/* 3.2 (d): compute the MAC of V, the private key, and h1, with
* key K, making a new key to replace K. */
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
put_byte(s->mac, 0);
put_int2octets(s->mac, s->x, s);
put_bits2octets(s->mac, make_ptrlen(h1, s->hlen), s);
ssh2_mac_genresult(s->mac, K);
ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
/* 3.2 (e): replace V with its HMAC using the new K. */
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
ssh2_mac_genresult(s->mac, s->V);
/* 3.2 (f): repeat step (d), only using the new K in place of the
* initial all-zeroes one, and with the extra byte in the middle
* of the MAC preimage being 1 rather than 0. */
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
put_byte(s->mac, 1);
put_int2octets(s->mac, s->x, s);
put_bits2octets(s->mac, make_ptrlen(h1, s->hlen), s);
ssh2_mac_genresult(s->mac, K);
ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
/* 3.2 (g): repeat step (e), using the again-replaced K. */
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
ssh2_mac_genresult(s->mac, s->V);
smemclr(h1, sizeof(h1));
smemclr(K, sizeof(K));
}
RFC6979Result rfc6979_attempt(RFC6979 *s)
{
RFC6979Result result;
/* 3.2 (h) 1: set T to the empty string */
/* 3.2 (h) 2: make lots of output by concatenating MACs of V */
for (size_t i = 0; i < s->T_nblocks; i++) {
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
ssh2_mac_genresult(s->mac, s->V);
memcpy(s->T + i * s->hlen, s->V, s->hlen);
}
/* 3.2 (h) 3: if we have a number in [1, q-1], return it ... */
result.k = bits2int(make_ptrlen(s->T, s->T_nblocks * s->hlen), s);
result.ok = mp_hs_integer(result.k, 1) & ~mp_cmp_hs(result.k, s->q);
/*
* Perturb K and regenerate V ready for the next attempt.
*
* We do this unconditionally, whether or not the k we just
* generated is acceptable. The time cost isn't large compared to
* the public-key operation we're going to do next (not to mention
* the larger number of these same operations we've already done),
* and it makes side-channel testing easier if this function is
* constant-time from beginning to end.
*
* In other rejection-sampling situations, particularly prime
* generation, we're not this careful: it's enough to ensure that
* _successful_ attempts run in constant time, Failures can do
* whatever they like, on the theory that the only information
* they _have_ to potentially expose via side channels is
* information that was subsequently thrown away without being
* used for anything important. (Hence, for example, it's fine to
* have multiple different early-exit paths for failures you
* detect at different times.)
*
* But here, the situation is different. Prime generation attempts
* are independent of each other. These are not. All our
* iterations round this loop use the _same_ secret data set up by
* rfc6979_new(), and also, the perturbation step we're about to
* compute will be used by the next iteration if there is one. So
* it's absolutely _not_ true that a failed iteration deals
* exclusively with data that won't contribute to the eventual
* output. Hence, we have to be careful about the failures as well
* as the successes.
*
* (Even so, it would be OK to make successes and failures take
* different amounts of time, as long as each of those amounts was
* consistent. But it's easier for testing to make them the same.)
*/
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
put_byte(s->mac, 0);
unsigned char K[MAX_HASH_LEN];
ssh2_mac_genresult(s->mac, K);
ssh2_mac_setkey(s->mac, make_ptrlen(K, s->hlen));
smemclr(K, sizeof(K));
ssh2_mac_start(s->mac);
put_data(s->mac, s->V, s->hlen);
ssh2_mac_genresult(s->mac, s->V);
return result;
}
void rfc6979_free(RFC6979 *s)
{
/* We don't free s->q or s->x: our caller still owns those. */
ssh_hash_free(s->hash);
ssh2_mac_free(s->mac);
smemclr(s->T, s->T_nblocks * s->hlen);
sfree(s->T);
/* Clear the whole structure before freeing. Most fields aren't
* sensitive (pointers or well-known length values), but V is, and
* it's easier to clear the whole lot than fiddle about
* identifying the sensitive fields. */
smemclr(s, sizeof(*s));
sfree(s);
}
mp_int *rfc6979(
const ssh_hashalg *hashalg, mp_int *q, mp_int *x, ptrlen message)
{
RFC6979 *s = rfc6979_new(hashalg, q, x);
rfc6979_setup(s, message);
RFC6979Result result;
while (true) {
result = rfc6979_attempt(s);
if (result.ok)
break;
else
mp_free(result.k);
}
rfc6979_free(s);
return result.k;
}

2
defs.h
View File

@ -177,6 +177,8 @@ typedef struct ecdh_key ecdh_key;
typedef struct ecdh_keyalg ecdh_keyalg;
typedef struct NTRUKeyPair NTRUKeyPair;
typedef struct NTRUEncodeSchedule NTRUEncodeSchedule;
typedef struct RFC6979 RFC6979;
typedef struct RFC6979Result RFC6979Result;
typedef struct dlgparam dlgparam;
typedef struct dlgcontrol dlgcontrol;

16
ssh.h
View File

@ -629,11 +629,18 @@ mp_int *ssh_rsakex_decrypt(
RSAKey *key, const ssh_hashalg *h, ptrlen ciphertext);
/*
* Helper function for k generation in DSA, reused in ECDSA
* System for generating k in DSA and ECDSA.
*/
mp_int *dsa_gen_k(const char *id_string,
mp_int *modulus, mp_int *private_key,
unsigned char *digest, int digest_len);
struct RFC6979Result {
mp_int *k;
unsigned ok;
};
RFC6979 *rfc6979_new(const ssh_hashalg *hashalg, mp_int *q, mp_int *x);
void rfc6979_setup(RFC6979 *s, ptrlen message);
RFC6979Result rfc6979_attempt(RFC6979 *s);
void rfc6979_free(RFC6979 *s);
mp_int *rfc6979(const ssh_hashalg *hashalg, mp_int *modulus,
mp_int *private_key, ptrlen message);
struct ssh_cipher {
const ssh_cipheralg *vt;
@ -1210,6 +1217,7 @@ extern const ssh2_macalg ssh_hmac_sha1_buggy;
extern const ssh2_macalg ssh_hmac_sha1_96;
extern const ssh2_macalg ssh_hmac_sha1_96_buggy;
extern const ssh2_macalg ssh_hmac_sha256;
extern const ssh2_macalg ssh_hmac_sha384;
extern const ssh2_macalg ssh_hmac_sha512;
extern const ssh2_macalg ssh2_poly1305;
extern const ssh2_macalg ssh2_aesgcm_mac;

View File

@ -90,6 +90,9 @@ def le_integer(x, nbits):
assert nbits % 8 == 0
return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])
def be_integer(x, nbits):
return bytes(reversed(le_integer(x, nbits)))
@contextlib.contextmanager
def queued_random_data(nbytes, seed):
hashsize = 512 // 8
@ -2075,6 +2078,244 @@ culpa qui officia deserunt mollit anim id est laborum.
self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))
def testRFC6979(self):
# The test case described in detail in RFC 6979 section A.1.
# We can't actually do the _signature_ for this, because it's
# based on ECDSA over a finite field of characteristic 2, and
# we only support prime-order fields. But we don't need to do
# full ECDSA, only generate the same deterministic nonce that
# the test case expects.
k = rfc6979('sha256',
0x4000000000000000000020108A2E0CC0D99F8A5EF,
0x09A4D6792295A7F730FC3F2B49CBC0F62E862272F, "sample")
self.assertEqual(int(k), 0x23AF4074C90A02B3FE61D286D5C87F425E6BDD81B)
# Selected test cases from the rest of Appendix A.
#
# We can only use test cases for which we have the appropriate
# hash function, so I've left out the test cases based on
# SHA-224. (We could easily implement that, but I don't think
# it's worth it just for adding further tests of this one
# function.) Similarly, I've omitted test cases relating to
# ECDSA curves we don't implement: P192, P224, and all the
# curves over power-of-2 finite fields.
#
# Where possible, we also test the actual signature algorithm,
# to make sure it delivers the same entire signature as the
# test case. This demonstrates that the rfc6979() function is
# being called in the right way and the results are being used
# as they should be. Here I've had to cut down the test cases
# even further, because the RFC specifies test cases with a
# cross product of DSA group and hash function, whereas we
# have a fixed hash (specified by SSH) for each signature
# algorithm. And the RFC is clear that you use the same hash
# for nonce generation and actual signing.
# A.2.1: 1024-bit DSA
q = 0x996F967F6C8E388D9E28D01E205FBA957A5698B1
x = 0x411602CB19A6CCC34494D79D98EF1E7ED5AF25F7
k = rfc6979('sha1', q, x, "sample")
self.assertEqual(int(k), 0x7BDB6B0FF756E1BB5D53583EF979082F9AD5BD5B)
k = rfc6979('sha256', q, x, "sample")
self.assertEqual(int(k), 0x519BA0546D0C39202A7D34D7DFA5E760B318BCFB)
k = rfc6979('sha384', q, x, "sample")
self.assertEqual(int(k), 0x95897CD7BBB944AA932DBC579C1C09EB6FCFC595)
k = rfc6979('sha512', q, x, "sample")
self.assertEqual(int(k), 0x09ECE7CA27D0F5A4DD4E556C9DF1D21D28104F8B)
k = rfc6979('sha1', q, x, "test")
self.assertEqual(int(k), 0x5C842DF4F9E344EE09F056838B42C7A17F4A6433)
k = rfc6979('sha256', q, x, "test")
self.assertEqual(int(k), 0x5A67592E8128E03A417B0484410FB72C0B630E1A)
k = rfc6979('sha384', q, x, "test")
self.assertEqual(int(k), 0x220156B761F6CA5E6C9F1B9CF9C24BE25F98CD89)
k = rfc6979('sha512', q, x, "test")
self.assertEqual(int(k), 0x65D2C2EEB175E370F28C75BFCDC028D22C7DBE9C)
# The rest of the public key, for signature testing
p = 0x86F5CA03DCFEB225063FF830A0C769B9DD9D6153AD91D7CE27F787C43278B447E6533B86B18BED6E8A48B784A14C252C5BE0DBF60B86D6385BD2F12FB763ED8873ABFD3F5BA2E0A8C0A59082EAC056935E529DAF7C610467899C77ADEDFC846C881870B7B19B2B58F9BE0521A17002E3BDD6B86685EE90B3D9A1B02B782B1779
g = 0x07B0F92546150B62514BB771E2A0C0CE387F03BDA6C56B505209FF25FD3C133D89BBCD97E904E09114D9A7DEFDEADFC9078EA544D2E401AEECC40BB9FBBF78FD87995A10A1C27CB7789B594BA7EFB5C4326A9FE59A070E136DB77175464ADCA417BE5DCE2F40D10A46A3A3943F26AB7FD9C0398FF8C76EE0A56826A8A88F1DBD
y = 0x5DF5E01DED31D0297E274E1691C192FE5868FEF9E19A84776454B100CF16F65392195A38B90523E2542EE61871C0440CB87C322FC4B4D2EC5E1E7EC766E1BE8D4CE935437DC11C3C8FD426338933EBFE739CB3465F4D3668C5E473508253B1E682F65CBDC4FAE93C2EA212390E54905A86E2223170B44EAA7DA5DD9FFCFB7F3B
pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
privblob = ssh2_mpint(x)
pubkey = ssh_key_new_pub('dsa', pubblob)
privkey = ssh_key_new_priv('dsa', pubblob, privblob)
sig = ssh_key_sign(privkey, b"sample", 0)
# Expected output using SHA-1 as the hash in nonce
# construction.
r = 0x2E1A0C2562B2912CAAF89186FB0F42001585DA55
s = 0x29EFB6B0AFF2D7A68EB70CA313022253B9A88DF5
ref_sig = ssh_string(b"ssh-dss") + ssh_string(
be_integer(r, 160) + be_integer(s, 160))
self.assertEqual(sig, ref_sig)
# And the other test string.
sig = ssh_key_sign(privkey, b"test", 0)
r = 0x42AB2052FD43E123F0607F115052A67DCD9C5C77
s = 0x183916B0230D45B9931491D4C6B0BD2FB4AAF088
ref_sig = ssh_string(b"ssh-dss") + ssh_string(
be_integer(r, 160) + be_integer(s, 160))
self.assertEqual(sig, ref_sig)
# A.2.2: 2048-bit DSA
q = 0xF2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F
x = 0x69C7548C21D0DFEA6B9A51C9EAD4E27C33D3B3F180316E5BCAB92C933F0E4DBC
k = rfc6979('sha1', q, x, "sample")
self.assertEqual(int(k), 0x888FA6F7738A41BDC9846466ABDB8174C0338250AE50CE955CA16230F9CBD53E)
k = rfc6979('sha256', q, x, "sample")
self.assertEqual(int(k), 0x8926A27C40484216F052F4427CFD5647338B7B3939BC6573AF4333569D597C52)
k = rfc6979('sha384', q, x, "sample")
self.assertEqual(int(k), 0xC345D5AB3DA0A5BCB7EC8F8FB7A7E96069E03B206371EF7D83E39068EC564920)
k = rfc6979('sha512', q, x, "sample")
self.assertEqual(int(k), 0x5A12994431785485B3F5F067221517791B85A597B7A9436995C89ED0374668FC)
k = rfc6979('sha1', q, x, "test")
self.assertEqual(int(k), 0x6EEA486F9D41A037B2C640BC5645694FF8FF4B98D066A25F76BE641CCB24BA4F)
k = rfc6979('sha256', q, x, "test")
self.assertEqual(int(k), 0x1D6CE6DDA1C5D37307839CD03AB0A5CBB18E60D800937D67DFB4479AAC8DEAD7)
k = rfc6979('sha384', q, x, "test")
self.assertEqual(int(k), 0x206E61F73DBE1B2DC8BE736B22B079E9DACD974DB00EEBBC5B64CAD39CF9F91C)
k = rfc6979('sha512', q, x, "test")
self.assertEqual(int(k), 0xAFF1651E4CD6036D57AA8B2A05CCF1A9D5A40166340ECBBDC55BE10B568AA0AA)
# The rest of the public key, for signature testing
p = 0x9DB6FB5951B66BB6FE1E140F1D2CE5502374161FD6538DF1648218642F0B5C48C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44FFE012E9936E00C1D3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5B3CC4D9BE341104AD4A80AD6C94E005F4B993E14F091EB51743BF33050C38DE235567E1B34C3D6A5C0CEAA1A0F368213C3D19843D0B4B09DCB9FC72D39C8DE41F1BF14D4BB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE92B871CD8F9C36D3292B5509CA8CAA77A2ADFC7BFD77DDA6F71125A7456FEA153E433256A2261C6A06ED3693797E7995FAD5AABBCFBE3EDA2741E375404AE25B
g = 0x5C7FF6B06F8F143FE8288433493E4769C4D988ACE5BE25A0E24809670716C613D7B0CEE6932F8FAA7C44D2CB24523DA53FBE4F6EC3595892D1AA58C4328A06C46A15662E7EAA703A1DECF8BBB2D05DBE2EB956C142A338661D10461C0D135472085057F3494309FFA73C611F78B32ADBB5740C361C9F35BE90997DB2014E2EF5AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA3A10B1C4D203CC76A470A33AFDCBDD92959859ABD8B56E1725252D78EAC66E71BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4D155179F9EC0DC4473F996BDCE6EED1CABED8B6F116F7AD9CF505DF0F998E34AB27514B0FFE7
y = 0x667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBD949F34A0A2564FE126DC8B715C5141802CE0979C8246463C40E6B6BDAA2513FA611728716C2E4FD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADECB31F658E934C0C197F2C4D96B05CBAD67381E7B768891E4DA3843D24D94CDFB5126E9B8BF21E8358EE0E0A30EF13FD6A664C0DCE3731F7FB49A4845A4FD8254687972A2D382599C9BAC4E0ED7998193078913032558134976410B89D2C171D123AC35FD977219597AA7D15C1A9A428E59194F75C721EBCBCFAE44696A499AFA74E04299F132026601638CB87AB79190D4A0986315DA8EEC6561C938996BEADF
pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
privblob = ssh2_mpint(x)
pubkey = ssh_key_new_pub('dsa', pubblob)
privkey = ssh_key_new_priv('dsa', pubblob, privblob)
sig = ssh_key_sign(privkey, b"sample", 0)
# Expected output using SHA-1 as the hash in nonce
# construction, which is how SSH does things. RFC6979 lists
# the following 256-bit values for r and s, but we end up only
# using the low 160 bits of each.
r = 0x3A1B2DBD7489D6ED7E608FD036C83AF396E290DBD602408E8677DAABD6E7445A
s = 0xD26FCBA19FA3E3058FFC02CA1596CDBB6E0D20CB37B06054F7E36DED0CDBBCCF
ref_sig = ssh_string(b"ssh-dss") + ssh_string(
be_integer(r, 160) + be_integer(s, 160))
self.assertEqual(sig, ref_sig)
# And the other test string.
sig = ssh_key_sign(privkey, b"test", 0)
r = 0xC18270A93CFC6063F57A4DFA86024F700D980E4CF4E2CB65A504397273D98EA0
s = 0x414F22E5F31A8B6D33295C7539C1C1BA3A6160D7D68D50AC0D3A5BEAC2884FAA
ref_sig = ssh_string(b"ssh-dss") + ssh_string(
be_integer(r, 160) + be_integer(s, 160))
self.assertEqual(sig, ref_sig)
# A.2.5: ECDSA with NIST P256
q = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
x = 0xC9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721
k = rfc6979('sha1', q, x, "sample")
self.assertEqual(int(k), 0x882905F1227FD620FBF2ABF21244F0BA83D0DC3A9103DBBEE43A1FB858109DB4)
k = rfc6979('sha256', q, x, "sample")
self.assertEqual(int(k), 0xA6E3C57DD01ABE90086538398355DD4C3B17AA873382B0F24D6129493D8AAD60)
k = rfc6979('sha384', q, x, "sample")
self.assertEqual(int(k), 0x09F634B188CEFD98E7EC88B1AA9852D734D0BC272F7D2A47DECC6EBEB375AAD4)
k = rfc6979('sha512', q, x, "sample")
self.assertEqual(int(k), 0x5FA81C63109BADB88C1F367B47DA606DA28CAD69AA22C4FE6AD7DF73A7173AA5)
k = rfc6979('sha1', q, x, "test")
self.assertEqual(int(k), 0x8C9520267C55D6B980DF741E56B4ADEE114D84FBFA2E62137954164028632A2E)
k = rfc6979('sha256', q, x, "test")
self.assertEqual(int(k), 0xD16B6AE827F17175E040871A1C7EC3500192C4C92677336EC2537ACAEE0008E0)
k = rfc6979('sha384', q, x, "test")
self.assertEqual(int(k), 0x16AEFFA357260B04B1DD199693960740066C1A8F3E8EDD79070AA914D361B3B8)
k = rfc6979('sha512', q, x, "test")
self.assertEqual(int(k), 0x6915D11632ACA3C40D5D51C08DAF9C555933819548784480E93499000D9F0B7F)
# The public key, for signature testing
Ux = 0x60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
Uy = 0x7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
pubblob = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(b"nistp256") + ssh_string(b'\x04' + be_integer(Ux, 256) + be_integer(Uy, 256))
privblob = ssh2_mpint(x)
pubkey = ssh_key_new_pub('p256', pubblob)
privkey = ssh_key_new_priv('p256', pubblob, privblob)
sig = ssh_key_sign(privkey, b"sample", 0)
# Expected output using SHA-256
r = 0xEFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716
s = 0xF7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8
ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
# And the other test string
sig = ssh_key_sign(privkey, b"test", 0)
r = 0xF1ABB023518351CD71D881567B1EA663ED3EFCF6C5132B354F28D3B0B7D38367
s = 0x019F4113742A2B14BD25926B49C649155F267E60D3814B4C0CC84250E46F0083
ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
# A.2.5: ECDSA with NIST P384
q = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973
x = 0x6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5
k = rfc6979('sha1', q, x, "sample")
self.assertEqual(int(k), 0x4471EF7518BB2C7C20F62EAE1C387AD0C5E8E470995DB4ACF694466E6AB096630F29E5938D25106C3C340045A2DB01A7)
k = rfc6979('sha256', q, x, "sample")
self.assertEqual(int(k), 0x180AE9F9AEC5438A44BC159A1FCB277C7BE54FA20E7CF404B490650A8ACC414E375572342863C899F9F2EDF9747A9B60)
k = rfc6979('sha384', q, x, "sample")
self.assertEqual(int(k), 0x94ED910D1A099DAD3254E9242AE85ABDE4BA15168EAF0CA87A555FD56D10FBCA2907E3E83BA95368623B8C4686915CF9)
k = rfc6979('sha512', q, x, "sample")
self.assertEqual(int(k), 0x92FC3C7183A883E24216D1141F1A8976C5B0DD797DFA597E3D7B32198BD35331A4E966532593A52980D0E3AAA5E10EC3)
k = rfc6979('sha1', q, x, "test")
self.assertEqual(int(k), 0x66CC2C8F4D303FC962E5FF6A27BD79F84EC812DDAE58CF5243B64A4AD8094D47EC3727F3A3C186C15054492E30698497)
k = rfc6979('sha256', q, x, "test")
self.assertEqual(int(k), 0x0CFAC37587532347DC3389FDC98286BBA8C73807285B184C83E62E26C401C0FAA48DD070BA79921A3457ABFF2D630AD7)
k = rfc6979('sha384', q, x, "test")
self.assertEqual(int(k), 0x015EE46A5BF88773ED9123A5AB0807962D193719503C527B031B4C2D225092ADA71F4A459BC0DA98ADB95837DB8312EA)
k = rfc6979('sha512', q, x, "test")
self.assertEqual(int(k), 0x3780C4F67CB15518B6ACAE34C9F83568D2E12E47DEAB6C50A4E4EE5319D1E8CE0E2CC8A136036DC4B9C00E6888F66B6C)
# The public key, for signature testing
Ux = 0xEC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13
Uy = 0x8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720
pubblob = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(b"nistp384") + ssh_string(b'\x04' + be_integer(Ux, 384) + be_integer(Uy, 384))
privblob = ssh2_mpint(x)
pubkey = ssh_key_new_pub('p384', pubblob)
privkey = ssh_key_new_priv('p384', pubblob, privblob)
sig = ssh_key_sign(privkey, b"sample", 0)
# Expected output using SHA-384
r = 0x94EDBB92A5ECB8AAD4736E56C691916B3F88140666CE9FA73D64C4EA95AD133C81A648152E44ACF96E36DD1E80FABE46
s = 0x99EF4AEB15F178CEA1FE40DB2603138F130E740A19624526203B6351D0A3A94FA329C145786E679E7B82C71A38628AC8
ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
# And the other test string
sig = ssh_key_sign(privkey, b"test", 0)
r = 0x8203B63D3C853E8D77227FB377BCF7B7B772E97892A80F36AB775D509D7A5FEB0542A7F0812998DA8F1DD3CA3CF023DB
s = 0xDDD0760448D42D8A43AF45AF836FCE4DE8BE06B485E9B61B827C2F13173923E06A739F040649A667BF3B828246BAA5A5
ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
# A.2.6: ECDSA with NIST P521
q = 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409
x = 0x0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538
k = rfc6979('sha1', q, x, "sample")
self.assertEqual(int(k), 0x089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9)
k = rfc6979('sha256', q, x, "sample")
self.assertEqual(int(k), 0x0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0)
k = rfc6979('sha384', q, x, "sample")
self.assertEqual(int(k), 0x1546A108BC23A15D6F21872F7DED661FA8431DDBD922D0DCDB77CC878C8553FFAD064C95A920A750AC9137E527390D2D92F153E66196966EA554D9ADFCB109C4211)
k = rfc6979('sha512', q, x, "sample")
self.assertEqual(int(k), 0x1DAE2EA071F8110DC26882D4D5EAE0621A3256FC8847FB9022E2B7D28E6F10198B1574FDD03A9053C08A1854A168AA5A57470EC97DD5CE090124EF52A2F7ECBFFD3)
k = rfc6979('sha1', q, x, "test")
self.assertEqual(int(k), 0x0BB9F2BF4FE1038CCF4DABD7139A56F6FD8BB1386561BD3C6A4FC818B20DF5DDBA80795A947107A1AB9D12DAA615B1ADE4F7A9DC05E8E6311150F47F5C57CE8B222)
k = rfc6979('sha256', q, x, "test")
self.assertEqual(int(k), 0x01DE74955EFAABC4C4F17F8E84D881D1310B5392D7700275F82F145C61E843841AF09035BF7A6210F5A431A6A9E81C9323354A9E69135D44EBD2FCAA7731B909258)
k = rfc6979('sha384', q, x, "test")
self.assertEqual(int(k), 0x1F1FC4A349A7DA9A9E116BFDD055DC08E78252FF8E23AC276AC88B1770AE0B5DCEB1ED14A4916B769A523CE1E90BA22846AF11DF8B300C38818F713DADD85DE0C88)
k = rfc6979('sha512', q, x, "test")
self.assertEqual(int(k), 0x16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D)
# The public key, for signature testing
Ux = 0x1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4
Uy = 0x0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5
pubblob = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(b"nistp521") + ssh_string(b'\x04' + be_integer(Ux, 528) + be_integer(Uy, 528))
privblob = ssh2_mpint(x)
pubkey = ssh_key_new_pub('p521', pubblob)
privkey = ssh_key_new_priv('p521', pubblob, privblob)
sig = ssh_key_sign(privkey, b"sample", 0)
# Expected output using SHA-512
r = 0x0C328FAFCBD79DD77850370C46325D987CB525569FB63C5D3BC53950E6D4C5F174E25A1EE9017B5D450606ADD152B534931D7D4E8455CC91F9B15BF05EC36E377FA
s = 0x0617CCE7CF5064806C467F678D3B4080D6F1CC50AF26CA209417308281B68AF282623EAA63E5B5C0723D8B8C37FF0777B1A20F8CCB1DCCC43997F1EE0E44DA4A67A
ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
# And the other test string
sig = ssh_key_sign(privkey, b"test", 0)
r = 0x13E99020ABF5CEE7525D16B69B229652AB6BDF2AFFCAEF38773B4B7D08725F10CDB93482FDCC54EDCEE91ECA4166B2A7C6265EF0CE2BD7051B7CEF945BABD47EE6D
s = 0x1FBD0013C674AA79CB39849527916CE301C66EA7CE8B80682786AD60F98F7E78A19CA69EFF5C57400E3B3A0AD66CE0978214D13BAF4E9AC60752F7B155E2DE4DCE3
ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
self.assertEqual(sig, ref_sig)
def testBLAKE2b(self):
# The standard test vectors for BLAKE2b (in the separate class
# below) don't satisfy me because they only test one hash
@ -2381,10 +2622,10 @@ culpa qui officia deserunt mollit anim id est laborum.
test_keys = [
('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
('ed448', 'AAAACXNzaC1lZDQ0OAAAADnRI0CQDym5IqUidLNDcSdHe54bYEwqjpjBlab8uKGoe6FRqqejha7+5U/VAHy7BmE23+ju26O9XgA=', 'AAAAObP9klqyiJSJsdFJf+xwZQdkbZGUqXE07K6e5plfRTGjYYkyWJFUNFH4jzIn9xH1TX9z9EGycPaXAA==', 448, b'0x4bf4a2b6586c60d8cdb52c2b45b897f6d2224bc37987489c0d70febb449e8c82964ed5785827be808e44d31dd31e6ff7c99f43e49f419928,0x5ebda3dbeee8df366106bb7c00d54fe5feae85a3a7aa51a17ba8a1b8fca695c1988e2a4c601b9e7b47277143b37422a522b9290f904023d1', [(0, 'AAAACXNzaC1lZDQ0OAAAAHLkSVioGMvLesZp3Tn+Z/sSK0Hl7RHsHP4q9flLzTpZG5h6JDH3VmZBEjTJ6iOLaa0v4FoNt0ng4wAB53WrlQC4h3iAusoGXnPMAKJLmqzplKOCi8HKXk8Xl8fsXbaoyhatv1OZpwJcffmh1x+x+LSgNQA=')]),
('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]),
('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]),
('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]),
('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]),
('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIFrd1bjr4GHfWsM9RNJ+y4Z0eVwpRRv3IvNE2moaA1x3AAAAIFWcwwCE69kS4oybMFEUP4r7qFAY8tSb1o8ItSFcSe2+')]),
('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABoAAAAMFqCJ+gBP4GGc7yCy9F5e4EjkDlvYBYsYWMYFg3Md/ml7Md8pIrN7I0+8bFb99rZjQAAADAsM2kI+QOcgK+oVDaP0qkLRRbWDO1dSU5I2YfETyHVLYFNdRmgdWo6002XTO9jAsk=')]),
('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACLAAAAQVBkbaCKivgvc+68CULCdPayjzRUYZdj1G2pLyiPWTdmJKVKF/W1oDAtjMZlP53tqCpGxDdrLoJH2A39k6g5MgNjAAAAQgGrNcesPBw/HMopBQ1JqOG1cSlAzjiFT34FvM68ZhdIjbQ0eHFuYs97RekQ8dpxmkuM88e63ATbZy4yDX06pKgmuQ==')]),
('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAoyCVHLG2QqdMx7NiCWaThx6tDA5mf7UGl+8By0IzmSldBujsGKNs20g==')]),
('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
]

View File

@ -327,6 +327,12 @@ FUNC(opt_val_string, key_components_nth_str,
FUNC(opt_val_mpint, key_components_nth_mp, ARG(val_keycomponents, kc),
ARG(uint, n))
/*
* DSA nonce generation.
*/
FUNC(opt_val_mpint, rfc6979, ARG(hashalg, hash), ARG(val_mpint, modulus),
ARG(val_mpint, private_key), ARG(val_string_ptrlen, message))
/*
* The ssh_cipher abstraction. The in-place encrypt and decrypt
* functions are wrapped to replace them with versions that take one

View File

@ -431,6 +431,8 @@ VOLATILE_WRAPPED_DEFN(static, size_t, looplimit, (size_t x))
X(argon2) \
X(primegen_probabilistic) \
X(ntru) \
X(rfc6979_setup) \
X(rfc6979_attempt) \
/* end of list */
static void test_mp_get_nbits(void)
@ -1744,6 +1746,63 @@ static void test_ntru(void)
strbuf_free(buffer);
}
static void test_rfc6979_setup(void)
{
mp_int *q = mp_new(512);
mp_int *x = mp_new(512);
strbuf *message = strbuf_new();
strbuf_append(message, 123);
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
for (size_t i = 0; i < looplimit(20); i++) {
random_read(message->u, message->len);
mp_random_fill(q);
mp_random_fill(x);
log_start();
rfc6979_setup(s, ptrlen_from_strbuf(message));
log_end();
}
rfc6979_free(s);
mp_free(q);
mp_free(x);
strbuf_free(message);
}
static void test_rfc6979_attempt(void)
{
mp_int *q = mp_new(512);
mp_int *x = mp_new(512);
strbuf *message = strbuf_new();
strbuf_append(message, 123);
RFC6979 *s = rfc6979_new(&ssh_sha256, q, x);
for (size_t i = 0; i < looplimit(5); i++) {
random_read(message->u, message->len);
mp_random_fill(q);
mp_random_fill(x);
rfc6979_setup(s, ptrlen_from_strbuf(message));
for (size_t j = 0; j < looplimit(10); j++) {
log_start();
RFC6979Result result = rfc6979_attempt(s);
mp_free(result.k);
log_end();
}
}
rfc6979_free(s);
mp_free(q);
mp_free(x);
strbuf_free(message);
}
static const struct test tests[] = {
#define STRUCT_TEST(X) { #X, test_##X },
TESTLIST(STRUCT_TEST)